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Definability in Monoidal Additive and Tensor
Triangulated Categories

Rose I Wagstaffe
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2023

The aim of this thesis is to investigate definability in monoidal additive cate-
gories. Given a monoidal finitely accessible category C, satisfying certain assump-
tions, we prove that there exists an inclusion-reversing bijection between the fp-
hom-closed definable subcategories of C and the Serre tensor-ideals S ⊆ Cfp-mod.
We use this result to prove that the 2-category of skeletally small abelian cate-
gories with additive exact symmetric monoidal structures is anti-equivalent to the
2-category of fp-hom-closed definable additive categories satisfying an exactness
criterion. We define a Ziegler-type topology, Zghom(C), whose closed subsets corre-
spond to the fp-hom-closed definable subcategories of C. We demonstrate that, in
general, Zghom(C) is non-trivial, distinct from Zg(C) and the topology on Zghom(C)
depends on the monoidal structure on C.

Under the additional assumption that Cfp is a rigid monoidal subcategory of
C, we show that a definable subcategory D ⊆ C is fp-hom-closed if and only if
it is a tensor-ideal. Furthermore, given A, a small preadditive category with an
additive symmetric rigid monoidal structure, we show that elementary duality
maps an fp-hom-closed definable subcategory D ⊆ Mod-A to a definable tensor-
ideal Dd ⊆ A-Mod and vice versa.

Let T be a rigidly-compactly generated tensor triangulated category. We pro-
vide tensor-analogues of Krause’s Fundamental Correspondence between definable
subcategories, Serre subcategories, cohomological ideals and closed subsets of the
Ziegler topology, considering both T -tensor-closed definable subcategories and de-
finable tensor-ideals.

We explore connections between definable tensor-ideals and smashing subcat-
egories, and define four new Ziegler-type topologies.

Finally, we define an internal tensor-duality on the definable subcategories of T
and describe the resulting lattice isomorphisms between our Ziegler-type topologies
and bijections between certain torsion-torsion-free triples in T .
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Chapter 1

Introduction

This thesis is concerned with exploring interactions between definability and

monoidal structures. The thesis is divided into two parts. The first part (Chap-

ters 3 and 4) is from the preprint [59] which is under review to be published and

concerns definable subcategories of monoidal finitely accessible categories. The

second part (Chapters 5, 6, 7 and 8) is based in the triangulated setting where we

consider definability in rigidly-compactly generated tensor triangulated categories.

Finitely accessible additive categories are big categories (in the sense that they

have a proper class of objects) which are generated by taking direct limits of a

skeletally small subcategory of so-called finitely presentable objects. A key ex-

ample of a finitely accessible category is the category of modules over some ring

(or ring with many objects), studied in infinite-dimensional representation theory.

One way to better understand the structure or complexity of a module category

is to understand its definable subcategories. Born out of research into the model

theory of modules, the definable subcategories of a finitely accessible category

with products, C, are those axiomatised by certain sentences called pp-pairs in

a many-sorted language, L (C), associated to the category C. Although C has

a proper class of objects, the definable subcategories of C form a set. Definable

subcategories are generated as such by certain objects called pure-injectives. The

isomorphism classes of indecomposable pure-injectives in C form a set which un-

derlies a topological space called the Ziegler spectrum. The Cantor-Bendixson
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rank of the Ziegler spectrum provides us with an invariant which sheds light on

the complexity of the module category.

Although the motivation behind definable subcategories was model theoretic,

they also have ‘nice’ algebraic properties. Indeed, a full subcategory of a finitely

accessible category with products, C, is definable if and only if it is closed under

direct products, direct limits and pure subobjects. In addition, equivalence classes

of pp-pairs in the language L (C) form the objects of a category, Leq+
C , which is

equivalent to the functor category Cfp-mod of finitely presented additive functors

from the category of finitely presentable objects of C to the category of abelian

groups.

For a functor F in Cfp-mod, denote by
−→
F : C → Ab the unique (up to isomor-

phism) extension of F to C which commutes with direct limits. Given a definable

subcategory D ⊆ C, the full subcategory S ⊆ Cfp-mod, consisting of all functors

F such that
−→
F (X) = 0 for all X ∈ D, is a Serre subcategory (e.g. see [48, The-

orem 12.4.1 and Corollary 12.4.2]). Consequently, Cfp-mod/S is a skeletally small

abelian category. Suppose D is equivalent to a definable subcategory of C ′, with

associated Serre subcategory S′ ⊆ C ′-mod. Then

Cfp-mod/S ' C ′fp-mod/S′ ' (D,Ab)Π→

where (D,Ab)Π→ denotes the category of additive functors from D to the category

of abelian groups which commute with direct products and direct limits ([49,

Theorem 12.10], [34, Theorem 7.2] for the case D = C). We say that a category D
is a definable category if there exists some finitely accessible category with products

C such that D is equivalent to a definable subcategory of C. In addition, we define

DEF to be the 2-category with definable categories as objects, 1-morphisms given

by additive functors which commute with direct products and direct limits and

2-morphisms given by natural transformations.

In [51], Prest and Rajani show that the assignment

D 7→ fun(D) := (D,Ab)Π→ extends to an anti-equivalence between the 2-category

DEF and the 2-category ABEX with objects given by skeletally small abelian cat-

egories, 1-morphisms given by additive exact functors and 2-morphisms given by
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natural transformations.

Many key examples of finitely accessible categories studied in additive repre-

sentation theory have an additive symmetric monoidal structure; for example the

category of modules over a commutative ring or group algebra for a finite group.

Given an additive symmetric monoidal structure on a finitely accessible category

with products C, we can induce a monoidal structure on the associated functor

category Cfp-mod by Day convolution product (see [20] and Section 2.2). More

generally, if D ⊆ C is a definable subcategory and the associated Serre subcate-

gory S ⊆ Cfp-mod is a tensor-ideal with respect to the induced monoidal structure,

then the localisation Cfp-mod/S ' fun(D) inherits a monoidal structure (see Defi-

nition 3.3.9).

Assume that C is a finitely accessible category with products and a closed

symmetric monoidal structure such that Cfp is a closed monoidal subcategory.

In addition, suppose that D is a definable subcategory of C with associated Serre

subcategory S ⊆ Cfp-mod. In Chapter 3 we show that S is a Serre tensor-ideal if and

only if D is fp-hom-closed, that is for all A ∈ Cfp and all X ∈ D, hom(A,X) ∈ D,

where hom denotes the internal hom-functor (Theorem 3.3.6). Using this result,

we define a 2-category DEF⊗ with objects given by triples (D, C,⊗) where (C,⊗)

is a monoidal finitely accessible category satisfying the assumptions given above

and D is an fp-hom-closed definable subcategory of C which satisfies an exactness

criterion. The 1-morphisms of DEF⊗ are the additive functors I : D → D′ which

commute with direct products and direct limits and such that the induced functor

I0 : fun(D′) → fun(D) (see [51, Theorem 2.3]) is monoidal and the 2-morphisms

are given by natural transformations. Let ABEX⊗ denote the 2-category with

objects the skeletally small abelian categories equipped with an additive symmetric

monoidal structure which is exact in each variable, 1-morphisms being the additive

exact monoidal functors and 2-morphisms the natural transformations. Chapter 3

is dedicated to proving that the 2-categories ABEX⊗ and DEF⊗ are anti-equivalent.

Suppose we have a triple (D, C,⊗) where D ⊆ C is an fp-hom-closed definable

subcategory and C is a finitely accessible category with products and an addi-

tive symmetric monoidal structure such that Cfp forms a monoidal subcategory.

(D, C,⊗) is an object of DEF⊗ if and only if the definable subcategory D satisfies
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an exactness criterion. If D ⊆ C is an fp-hom-closed definable subcategory, then D
and Ex(fun(D),Ab) are equivalent in DEF. The exactness criterion is necessary to

ensure that Ex(fun(D),Ab) ⊆ fun(D)-Mod is also fp-hom-closed (Theorem 3.4.2

and Proposition 3.3.11). In practice, many fp-hom-closed definable subcategories

do not satisfy the exactness criterion. Indeed, the exactness criterion for D implies

that the monoidal structure on fun(D) is exact (Theorem 3.3.10), when in general

this monoidal structure is only right exact.

In Chapter 4, we discuss the relationship between definability and monoidal

structures for fixed C. We define a coarser version of the Ziegler spectrum, denoted

by Zghom(C), on the set of (isomorphism classes of) indecomposable pure-injectives

in C called the fp-hom-closed Ziegler topology (Section 4.1). Zghom(C) is defined

such that there exists a lattice isomorphism between the lattice of closed subsets

of Zghom(C) and the lattice of fp-hom-closed definable subcategories of C. For

C = R-Mod, where R is a commutative ring, we provide an example showing

that in general Zghom(C) is non-trivial and Zghom(C) can be different to Zg(C). In

addition, we demonstrate that Zghom(C) depends on the monoidal structure on C,
using two examples from [50, Section 13].

We also consider what can be said under the additional assumption that Cfp is

a rigid monoidal subcategory of C (Section 4.3). A monoidal category is said to be

rigid if every object has a dual object. For example if C = kG-Mod where G is a

finite group and the tensor product is given by ⊗k, then Cfp = kG-mod is a rigid

monoidal category, where the dual of a module M is given by Homk(M,k). In this

setting, a definable subcategory is fp-hom-closed if and only if it is a tensor-ideal

(Corollary 4.3.1).

Given a skeletally small preadditive category A, one can define the language

for right A-modules, LA and the language for left A-modules, AL . Elemen-

tary duality of pp formulas maps a pp formula φ in the language LA to a pp

formula Dφ in the language AL and vice versa. Elementary duality extends to

pp-pairs and therefore can also be viewed as a duality between the functor cat-

egories (mod-A,Ab)fp and (A-mod,Ab)fp. Elementary duality of pp-pairs, or

equivalently finitely presented functors, gives rise to an elementary duality of de-

finable subcategories. In Section 4.4, we show that ifA has an additive, symmetric,
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rigid monoidal structure, then elementary duality yields a bijection between the

fp-hom-closed definable subcategories of Mod-A and the definable tensor-ideals of

A-Mod.

The second part of this thesis is concerned with definability in rigidly-compactly

generated tensor triangulated categories. In representation theory, triangulated

categories are used to better understand the structure of important abelian cate-

gories. For example the derived category of a module category is the appropriate

setting for homological algebra and the stable module category of a group algebra

allows us to factor out the well-understood projective modules and focus on the

non-projectives. The complexity of the stable module category indicates how far

the module category is from being semisimple. In these key examples (provided

we consider modules over a commutative ring) the triangulated category has a

rigidly-compactly generated tensor triangulated structure.

As in the finitely accessible case, we can define a language, L (T ), and use

pp-pairs in this language to define the definable subcategories of a compactly gen-

erated triangulated category T . What’s more the set of (isomorphism classes of)

indecomposable pure-injective objects in T form the underlying set of a topol-

ogy, ZgT , called the Ziegler spectrum of T . These analogous definitions in the

triangulated setting make sense and interact much like their finitely accessible

counterparts. The reason behind these similarities is a strong connection between

T and a definable subcategory of the finitely accessible category Mod-T c of right

T c-modules, namely the definable subcategory Abs-T c of absolutely pure right

T c-modules. Indeed, the restricted Yoneda functor H : T → Mod-T c, given by

X 7→ HX := (−, X)|T c , induces a homeomorphism between ZgT and Zg(Abs-T c)
(and in particular an isomorphism between the lattice of definable subcategories

of T and the lattice of definable subcategories of Abs-T c) [6, Theorem 1.10]. Fur-

thermore the language for T is the language for right T c-modules and every X ∈ T
becomes an L (T )-structure in the same way that HX can be viewed as a structure

for the language of right T c-modules.

In 2002, Krause described a fundamental correspondence, [36], between defin-

able subcategories, coherent functors, cohomological ideals and closed subsets of

the Ziegler spectrum in the setting of compactly-generated triangulated categories
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(see Theorem 2.5.11). Here, any coherent functor can be realised as the assignment

X 7→ φ(X) for a pp formula φ in the language L (T ) and any pp formula φ defines

a coherent functor in this way [27, Lemma 4.3]. The correspondence between de-

finable subcategories, coherent functors and closed subsets of the Ziegler spectrum

echoes a result in the finitely accessible setting. The link to cohomological ideals

in the triangulated case is a consequence of the following. Every pp formula in

L (T ) is equivalent to a division formula, φf defined to be ∃yB xA = yBf for some

morphism f : A→ B in T c [27, Proposition 3.1]. The meaning of equivalent here

will be made precise in Section 2.5. The cohomological ideal J corresponding to a

definable subcategory D is given by all the morphisms f in T c such that φf (X) = 0

for all X ∈ D.

In Chapter 6, we define a new Ziegler-type topology which we call the T -tensor-

closed Ziegler topology and provide a tensor-analogue of Krause’s Fundamental

Correspondence. Let T be a rigidly-compactly generated tensor triangulated cat-

egory. In Theorem 5.1.8 and Proposition 6.1.13 we establish a inclusion-preserving

bijective correspondence between the

(i) T -tensor-closed definable subcategories D ⊆ T , which are the same as the

(ii) T c-tensor-closed definable subcategories D ⊆ T and the

(iii) closed subsets of the T -tensor-closed Ziegler topology C ⊆ Zg⊗T

and an inclusion-preserving bijective correspondence between the

(iv) Serre tensor-ideals S ⊆ Coh(T ),

(v) Serre tensor-ideals C ⊆ mod-T c and the

(vi) T c-tensor-closed cohomological ideals J ⊆ morph(T c).

Furthermore, we show that (i)-(iii) correspond via inclusion-reversing bijections to

(iv)-(vi). For undefined notation and terminology see Section 5.1.

Later work by Krause, ([37]), provides a restriction of the Fundamental Corre-

spondence to the case where the definable subcategory, D, is triangulated. Here
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we give a tensor-analogue of this restriction. For T a rigidly-compactly gener-

ated tensor triangulated category, we prove in Theorem 5.2.14 that the above

tensor-analogue of Krause’s Fundamental Correspondence restricts to a bijective

correspondence between the

(i) definable tensor-ideals D ⊆ T ,

(ii) smashing tensor-ideals B ⊆ T ,

(iii) perfect Serre tensor-ideals C ⊆ mod-T c and the

(iv) T c-tensor-closed exact ideals J ⊆ morph(T c).

For undefined notation and terminology see Section 5.2.

In Chapter 6 we explore various topological spaces which can be associated to a

rigidly-compactly generated tensor triangulated category T . In Section 6.1 we de-

fine four different Ziegler-type topologies (including the one previously mentioned),

namely the positive shift-closed Ziegler topology, ZgΣ+

T , the negative shift-closed

Ziegler topology ZgΣ−

T , the shift-closed Ziegler topology ZgΣ
T and the T -tensor-

closed Ziegler topology Zg⊗T . Let O(X) denote the lattice of open subsets of the

topological space X. We have the following relationships between the lattices of

open subsets

O(ZgΣ+

T ) ∩O(ZgΣ−

T ) = O(ZgΣ
T )

and

O(Zg⊗T ) ⊆ O(ZgΣ
T ) ⊆ O(ZgT ).

We show that the lattice of open subsets of the shift-closed Ziegler topology is

isomorphic to the lattice of open subsets of a quotient topology of the Ziegler

topology, but such an isomorphism does not exist for the T -tensor-closed Ziegler

topology (Proposition 6.1.10 and Example 6.1.20).

In Section 6.2 we consider the spectrum of a small tensor triangulated category

K, defined by Balmer in 2005, which here we call the Balmer spectrum of K and

denote by Spc(K) (see [8]). Inspired by the prime spectrum of a commutative ring,

Spc(K) has underlying set given by the so-called prime tensor-ideals of K.
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In Chapter 7, we use a result from [27] and our rigidity assumption to define

an internal tensor-duality on the definable subcategories of T . In Theorem 7.2.5

we prove that internal tensor-duality induces a lattice automorphism on O(ZgT )

which gives an isomorphism O(ZgΣ+

T ) ∼= O(ZgΣ−

T ), restricts to an automorphism

on O(ZgΣ
T ) = O(ZgΣ+

T ) ∩O(ZgΣ−

T ) and fixes O(Zg⊗T ).

In [4], the authors establish a 1-1 correspondence between the compactly-

generated TTF triples in D(Mod-R) and the compactly-generated TTF triples

in D(R-Mod) for any ring R [4, Theorem 3.1]. Notice that a compactly-generated

TTF triple (U ,V ,W) in either of these categories has definable middle spot V . In

the case that R is commutative, it can easily be seen that the 1-1 correspondence of

[4, Theorem 3.1] is induced by the internal tensor-duality defined in Chapter 7. In

Chapter 8, we generalise this result to algebraic rigidly-compactly generated tensor

triangulated categories. More generally, we show that, given an algebraic rigidly-

compactly generated tensor triangulated category T , internal tensor-duality in-

duces a bijective correspondence between the suspended TTF triples (U ,V ,W)

such that V is definable and the cosuspended TTF triples (U ′,V ′,W ′) with V ′

definable (Theorem 8.1.16). This bijection restricts to a bijective correspondence

between compactly generated suspended TTF triples and compactly generated co-

suspended TTF triples (Proposition 8.1.11) and restrict to an automorphism on

the class of all stable TTF triples (U ,V ,W) such that V is definable.

When T = D(Mod-R) where R is a commutative ring, the above correspon-

dence between suspended and cosuspended TTF triples yields an injective map

{ Silting objects S in D(Mod-R)

with S⊥>0 definable, up to equivalence

}
↪→
{

Pure−injective cosilting objects
in D(Mod-R), up to equivalence

}
.

The restriction of the above to the compactly generated case results in the injective

map {
Silting objects of finite type

in D(Mod-R), up to equivalence

}
↪→
{

Cosilting objects of finite type
in D(R-Mod), up to equivalence

}
from [4, Theorem 3.3], which the authors use to describe a silting-cosilting duality

on bounded silting and cosilting complexes.

In Section 8.3 we consider the case T = D(R-Mod) where R is a coherent

commutative ring of weak global dimension at most one such that every finitely
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presented R-module has finite projective dimension. In this setting T comes

equipped with the standard t-structure which allows us to use homological algebra

to make comparisons between definability in T and its Grothendieck monoidal

heart, Mod-R. In Proposition 8.3.9 we show that the nth cohomology of a T -

tensor-closed definable subcategory is fp-hom-closed. Let D be a definable sub-

category of T = D(R-Mod) with internal tensor-dual D∨. In Theorem 8.3.13 we

show that, for each n ∈ Z, Hn(D) and Hn(D∨) are elementary dual definable

subcategories.



Chapter 2

Background

In this chapter we provide some background material which will be useful through-

out the rest of the thesis. Sections 2.2, 2.3 and 2.4 from this chapter are largely

based on material from [59].

2.1 Conventions and Notation

We assume basic knowledge of additive category theory. All our categories are

preadditive and have small hom-sets, all functors are additive and all subcate-

gories are closed under isomorphism. Given preadditive categories A and B, we

will denote by (A,B) the functor category of all additive functors from A to B.

The functor category (A,Ab) will be denoted by A-Mod and the subcategory of

all finitely presented objects with be denoted by A-mod := (A-Mod)fp. Similarly,

we denote by Mod-A and mod-A the categories (Aop,Ab) and (Aop,Ab)fp respec-

tively. For a preadditive category C we denote by C (X, Y ) the abelian group of

all morphisms in C from X to Y . When C = A-Mod or Mod-A we may denote

the hom-set by HomA(X, Y ) and when the category is clear from context we will

simply write (X, Y ).

Many of the category theoretic results in this thesis are established up to equiv-

alence of categories. We treat isomorphic objects as the same and blur the line

between isomorphism and equality. On occasion we may identify a category with

19



20 CHAPTER 2. BACKGROUND

its skeleton. In addition, we often define an object up to isomorphism as a limit or

colimit. Since our main application is representation theory, in which isomorphic

modules are thought of as the same, these conventions are appropriate. We will

use ∼= to denote isomorphism (usually between objects of a category) and ' to

denote equivalence. We will say there is a duality between categories A and B if

there is an equivalence A op ' B. If λ : A → B is left adjoint to ρ : B → A , we

use the notation λ a ρ.

Given a category C , we will write X ∈ C to assert that X is an object of

the category C . We will write f ∈ morph(C ) to mean ‘f is a morphism in C ’.

Similarly if X is a subcategory of C we will write X ⊆ C . We use this set

theoretic language irrespective of whether C has a proper class of objects or not.

Unless mentioned otherwise, all subcategories will be full subcategories and we

may identify a class of objects with the full subcategory it determines. Given a

2-category C , we will write C op to denote the category in which 1-morphisms are

reversed but 2-morphisms are not reversed. Given an appropriate category C and a

set of objects X ⊆ C , we write
〈
X
〉def

to denote the smallest definable subcategory

containing X and
〈
X
〉S

to denote the smallest Serre subcategory containing X . If

X only has one object, say X, we will write
〈
X
〉∗

.

We also assume basic knowledge of monoidal categories. Every monoidal cate-

gory is monoidally equivalent to a strict monoidal category [41, Section XI, Subsec-

tion 3, Theorem 1]. Therefore we are safe to suppress all unitors and associators,

treating them as identities. All our monoidal structures are additive and sym-

metric, and we denote the tensor-product functor by ⊗ and the tensor unit by 1.

Where a monoidal category is closed, we denote the internal hom-functor by hom.

Basic knowledge about triangulated categories is also assumed. Here, unless

stated otherwise, we denote the shift functor by Σ. We refer to distinguished

triangles and exact triangles interchangeably. We say that a functor F : K → T
between triangulated categories K and T is a triangulated functor or is exact if

F maps exact triangles to exact triangles. The natural isomorphism F ◦Σ ∼= Σ◦F
will usually remain implicit. Let us introduce the following definition.

Definition 2.1.1. Let C be a category and f : X → Y be a morphism in C . A

morphism f ′ : Y → Z is said to be a weak cokernel or pseudocokernel of f
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if f ′ ◦ f = 0 and given any morphism g : Y → Y ′ which satisfies g ◦ f = 0, there

exists some g′ : Z → Y ′ such that g = g′ ◦ f ′.
A morphism f ′′ : W → X is said to be a weak kernel or pseudokernel of f

if f ◦ f ′′ = 0 and given any morphism h : X ′ → X which satisfies f ◦ h = 0, there

exists some h′ : X ′ → W such that h = f ′′ ◦ h′.

We frequently use the following property which follows easily from the axioms

of a triangulated category.

Lemma 2.1.2. Suppose T is a triangulated category and X
f−→ Y

f ′−→ Z → ΣX is

an exact triangle in T . Then f is a weak kernel of f ′ and f ′ is a weak cokernel of

f .

For T a rigidly-compactly generated tensor triangulated category, we distin-

guish between T -tensor-closed definable subcategories, that is definable subcat-

egories which are closed under tensoring with any X ∈ T and definable tensor-

ideals, which are also triangulated. For a full subcategory X ⊆ T , we denote by〈
X
〉def⊗

and
〈
X
〉def⊗∆

the smallest T -tensor-closed definable subcategory contain-

ing X and the smallest definable tensor-ideal containing X respectively. We also

use the notation
〈
I
〉cohom

to denote the smallest cohomological ideal containing I

for some subclass I ⊆ morph(T c) where T is a compactly generated triangulated

category. Given a topological space X we denote by O(X) the frame of open

subsets of X.

We also assume some very basic knowledge of the model theory of modules

including the use of first order many-sorted languages.

2.2 Day convolution product

Given a small preadditive category, C , with a monoidal structure, we will use Day

convolution product to induce a monoidal structure on C -Mod.

Theorem 2.2.1. [20, Theorem 3.3 and Theorem 3.6] Given a complete and cocom-

plete closed symmetric monoidal category V , and a small (symmetric) monoidal

V -enriched category C , the category of V -enriched functors from C to V , V [C , V ],

is a monoidal category admitting a (symmetric) closed monoidal structure.
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Throughout our V (as above) will be the category of abelian groups, Ab. Given

a symmetric monoidal structure (⊗, 1) on a small preadditive category A, we may

refer to the Day convolution product on the functor category A-Mod := (A,Ab)

as the ‘induced monoidal structure’ or ‘induced tensor product’ and denote the

tensor product functor by ⊗. By Theorem 2.2.1, the induced monoidal structure

on A-Mod is closed, that is, for every X ∈ A-Mod, X⊗− : A-Mod→ A-Mod has

a right adjoint functor which we will denote by hom(X,−) : A-Mod → A-Mod

and call the internal hom-functor.

Since for each F ∈ A-Mod, F⊗− is a left adjoint, it is right exact and commutes

with direct limits. Furthermore, by definition of Day convolution product, given

representable functors (A,−) and (B,−) in A-Mod, we have (A,−) ⊗ (B,−) ∼=
(A⊗B,−). Thus, by right exactness, if F ∈ A-mod has presentation (B,−)

(f,−)−−−→
(A,−) → F → 0, with f : A → B a morphism in A, then (C,−) ⊗ F has

presentation (C ⊗B,−)
(C⊗f,−)−−−−−→ (C ⊗ A,−)→ (C,−)⊗ F → 0.

Notation 2.2.2. Given an additive (skeletally) small category A every finitely pre-

sented module F ∈ A-mod has a presentation of the form (B,−)
(f,−)−−−→ (A,−)

πf−→
F → 0, with f : A→ B in A. We will denote such a functor by Ff .

In the above notation we have (C,−) ⊗ Ff = FC⊗f . More generally, Ff ⊗ Fg
fits into the following commutative diagram with exact rows and columns.

(B ⊗ V,−) (A⊗ V,−) Ff ⊗ (V,−) 0

(B ⊗ U,−) (A⊗ U,−) Ff ⊗ (U,−) 0

(B,−)⊗ Fg (A,−)⊗ Fg Ff ⊗ Fg 0

0 0 0

(f ⊗ V,−)

(f ⊗ U,−)

(f,−)⊗ Fg

(B ⊗ g,−) (A⊗ g,−) Ff ⊗ (g,−)
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Therefore Ff ⊗ Fg = F(f⊗U,A⊗g), where f : A → B and g : U → V and

(f ⊗ U,A⊗ g) : A⊗ U → (B ⊗ U)⊕ (A⊗ V ) is the canonical map.

Thus, Day convolution product restricts to a monoidal structure on the cate-

gory of finitely presented additive functors A-mod, which we may also refer to as

the ‘induced monoidal structure’ or ‘induced tensor product’. This is exactly the

tensor product given in [50, Section 13.3] with A = R-mod. Here we avoid the

notation (R-mod)-mod in favour of (R-mod,Ab)fp.

2.3 Rigid monoidal categories

In this section we will outline the definition of a rigid monoidal category.

Definition 2.3.1. Let C be a symmetric monoidal category. C∨ ∈ C is dual to

C ∈ C if there exists morphisms ηC : 1→ C∨⊗C and εC : C ⊗C∨ → 1 such that

(C∨ ⊗ εC) ◦ (ηC ⊗ C∨) = idC∨ and (εC ⊗ C) ◦ (C ⊗ ηC) = idC .

An object C in a closed symmetric monoidal category C is said to be rigid if

it has a dual. The category C is said to be rigid if every object of C is rigid.

The following are important consequences of the existence of dual objects.

Proposition 2.3.2. (e.g. [24, Proposition 1.10.9]) Let C be a symmetric monoidal

category and suppose C ∈ C is rigid. Then C∨ ⊗ − is both left and right adjoint

to C ⊗−.

Corollary 2.3.3. Let C be a closed symmetric monoidal category and suppose C∨

is dual to C in C . There exists a natural isomorphism hom(C,−) ∼= C∨ ⊗−.

Corollary 2.3.4. Let A be an abelian category with a closed symmetric monoidal

structure and suppose C ∈ A is rigid. Then C ⊗− : A → A is exact.

Definition 2.3.5. Let C be a rigid symmetric monoidal category. Given any

morphism, f : A → B in C , there exists a dual morphism, f∨ : B∨ → A∨ in C ,

given by the composition

B∨
ηA⊗B∨−−−−→ A∨ ⊗ A⊗B∨ A∨⊗f⊗B∨−−−−−−→ A∨ ⊗B ⊗B∨ A∨⊗εB−−−−→ A∨.
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2.4 Purity in finitely accessible categories

The results in this section will be stated without proof and we direct the reader to

[48], [49] and [51] for more details. Throughout the section, we use [48] and [49]

as convenient secondary sources.

Let us recall the definition of a finitely accessible category.

Definition 2.4.1. A category C is said to be finitely accessible, if it has direct

limits and there exists a set, G , of finitely presentable objects of C such that for

every X ∈ C, we can write X as a direct limit of copies of objects of G . That is,

X = lim−→i∈IXi where I is some directed indexing set and each Xi ∈ G . Note that

in this case, the full subcategory of finitely presentable objects of C, denoted by

Cfp, is skeletally small and we can take G to consist of a representative of each

isomorphism class of Cfp. For the purposes of this thesis we will take ‘finitely

accessible’ to mean additive and finitely accessible.

A category C is locally finitely presented if it is finitely accessible, complete

and cocomplete.

Example 2.4.2. The category A-Mod for any ring or skeletally small preadditive

category A is a locally finitely presented category. The skeletally small subcate-

gory of finitely presentable objects is the subcategory of finitely presented modules,

A-mod.

Next we define the language for modules over a small preadditive category A.

Definition 2.4.3. Given a (skeletally) small preadditive category A, we define

the language for right (respectively left) A-modules, to be the multi-sorted

language with a sort for each (isomorphism class of) object of A, a constant symbol

0A and a binary function symbol +A of sort A for each object A ∈ A and a unary

function symbol, f of sort B → A (respectively A → B), for every morphism

f : A→ B in A. We denote this language by LA (respectively AL ).

Notation 2.4.4. When writing formulas in a many-sorted language L , we use

subscripts to indicate the sort of any variable, so xA is a variable of sort A.
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A right (respectively left) A-module, F : (A)op → Ab (respectively F : A →
Ab), becomes a structure in the language for right (respectively left) A-modules,

where the universe is the multi-sorted set (F (A))A∈A, +A and 0A give the abelian

group structure of F (A) and for each f : A → B in A, the interpretation of the

function symbol f : B → A (respectively f : A→ B) is given by F (f).

A pp formula in any language has the form

∃y1, ..., yl

m∧
j=1

θj(x1, ..., xn, y1, ..., yl)

where the θjs are atomic formulas in the language. Given pp formulas φ and ψ

in the language LA (respectively AL ) with the same number of free variables, we

say that ψ ≤ φ if for all F ∈ Mod-A (respectively F ∈ A-Mod), ψ(F ) ⊆ φ(F ).

≤ defines a partial order on the pp formulas and if ψ ≤ φ we say that φ/ψ is a

pp-pair. Since ψ(F ) and φ(F ) are always additive abelian groups we can form the

quotient group φ(F )/ψ(F ). Thus, since morphisms preserve pp formulas, the pp-

pair φ/ψ gives rise to a functor Mod-A → Ab (respectively A-Mod → Ab). We

say that two pp-pairs φ/ψ and φ′/ψ′ in LA (respectively AL ) are equivalent on

Mod-A (respectively equivalent on A-Mod) if for all F ∈ Mod-A (respectively

F ∈ A-Mod), φ(F )/ψ(F ) = φ′(F )/ψ′(F ). So pp-pairs are equivalent on Mod-A
(respectively A-Mod) if and only if they give rise to the same functor. We can

identify a pp formula φ with the pp-pair φ/x = 0 where x matches the free variables

of φ. Two pp formulas are equivalent if so are their associated pp-pairs.

Let Leq+
A (respectively ALeq+) denote the category of pp-pairs in the language

for right (respectively left) A-modules. That is, the category with objects given

by pp-pairs and morphisms given by pp-definable maps between A-modules (see

[48, Section 3.2.2]). Here, a pp formula ρ(x, y) is said to be a pp-definable map

from φ/ψ to φ′/ψ′ if for all F ∈ Mod-A (respectively F ∈ A-Mod), ρ(F ) is the

graph of a group homomorphism from φ(F )/ψ(F ) to φ′(F )/ψ′(F ). Notice that

equivalent pp-pairs are isomorphic as objects of Leq+
A (respectively ALeq+). We

have the following theorem.
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Theorem 2.4.5. [48, Theorem 10.2.30] The category (mod-A,Ab)fp is equivalent

to the category Leq+
A of pp-pairs in the language for right A-modules. Similarly,

the category (A-mod,Ab)fp is equivalent to the category ALeq+ of pp-pairs in the

language for left A-modules.

Therefore, Day convolution product induces a tensor product of (equivalence

classes of) pp-pairs by asserting that the equivalence in Theorem 2.4.5 is monoidal.

One can define an elementary duality of pp formulas syntactically as follows.

A pp formula φ in the language LA will have the form

∃yB1 , ..., yBm

l∧
j=1

n∑
i=1

fij(xAi) +
m∑
k=1

gkj(yBk) = 0Cj ,

where fij : Cj → Ai and gkj : Cj → Bk are morphisms in A which give rise to

unary function symbols of the opposite arity. In the language for right A-modules,

it is convention for the unary function symbols to act on the right. Thus we rewrite

φ as

∃yB1 , ..., yBm

l∧
j=1

n∑
i=1

xAifij +
m∑
k=1

yBkgkj = 0Cj

or for short

∃y (x, y)

(
F

G

)
= 0,

where F is the n× l matrix with (i, j)th entry fij and G is the m× l matrix with

(k, j)th entry gkj. The elementary dual of φ is the pp formula Dφ in the language

AL given by

∃z

(
In F

0m×n G

)(
x

z

)
= 0,

or more specifically

∃zC1 , ..., zCl ((
n∧
i=1

xAi +
l∑

j=1

fij(zCj) = 0Ai) ∧ (
m∧
k=1

gkj(zCj) = 0Bk)).
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Given a pp formula ψ in AL of the form

∃y
(
F G

)(x
y

)
= 0,

we define the elementary dual pp formula Dψ, in the language LA to be

∃z (x, z)

(
I 0

F G

)
= 0.

It is straight forward to check that φ and DDφ are equivalent on Mod-A (in

particular isomorphic as objects of Leq+
A ), ψ and DDψ are equivalent on A-Mod

(in particular isomorphic as objects of ALeq+) and for pp formulas ψ and φ for

both left and right A-modules, ψ ≤ φ if and only if Dφ ≤ Dψ, that is D maps

pp-pairs to pp-pairs. Furthermore we have the following.

Theorem 2.4.6. [29, Theorem 2.9] [48, Theorem 3.2.12] Elementary duality in-

duces a duality between the categories Leq+
A and ALeq+.

Recall from Theorem 2.4.5 that we have equivalences (mod-A,Ab)fp ' Leq+
A

and (A-mod,Ab)fp ' ALeq+. Therefore elementary duality of pp formulas induces

a duality on the functor categories (mod-A,Ab)fp and (A-mod,Ab)fp.

Let A be a skeletally small preadditive category. We define the tensor product

of A-modules, a generalisation of tensor product over a ring.

Definition 2.4.7. (see for example [49, Section 3]) The tensor product of A-

modules is given by a functor − ⊗A − : Mod-A × A-Mod → Ab determined

on objects (up to isomorphism) by the following two assertions. For every M ∈
Mod-A,

(i) M ⊗A (A,−) ∼= M(A) for every A ∈ A,

(ii) M ⊗A − is right exact.

The functor is defined on morphisms in the obvious way.

We can now define elementary duality of the functor categories as follows.
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Theorem 2.4.8. (see [49, Theorem 4.5]) Elementary duality induces a duality of

categories (−)d : ((mod-A,Ab)fp)op → (A-mod,Ab)fp given on objects by mapping

F = Ff : mod-A → Ab, where f : A → B in mod-A, to F d : A-mod → Ab

where F d(L) = (F,− ⊗A L) for every left A-module L. In particular, F d has

copresentation

0→ F d → A⊗A −
f⊗A−−−−→ B ⊗A −.

Next we introduce definable subcategories.

Definition 2.4.9. Let A be a skeletally small preadditive category. A full sub-

category D ⊆ Mod-A (respectively D ⊆ A-Mod) is said to be a definable sub-

category if it has form

D = {X : φλ(X)/ψλ(X) = 0 ∀λ ∈ Λ}

where {φλ/ψλ}λ∈Λ is a set of pp-pairs in the language LA (respectively AL ).

Notation 2.4.10. Let C be a finitely accessible category. For F ∈ Cfp-mod, denote

by
−→
F : C → Ab the unique extension of F to C which commutes with direct limits

([7, page 4–5], also see [48, Proposition 10.2.41]).

By the equivalences in Theorem 2.4.5, D ⊆ Mod-A is definable if and only if

there is a collection of finitely presented functors S ⊆ (mod-A,Ab)fp such that

X ∈ D if and only if
−→
F (X) = 0 for all F ∈ S.

Definition 2.4.11. Let A be an abelian category. A full subcategory S ⊆ A is

said to be a Serre subcategory, if for every short exact sequence 0→ A→ B →
C → 0 in A , A, C ∈ S if and only if B ∈ S.

If D ⊆ Mod-A is definable then the set S = {F ∈ (mod-A,Ab)fp :
−→
F (X) =

0, ∀X ∈ D} is a Serre subcategory (and similarly for the left A-module case).

Indeed, we have the following result.

Theorem 2.4.12. [49, Theorem 8.1] Let A be a skeletally small preadditive cate-

gory. Then there exist bijections between:

(i) the Serre subcategories S ⊆ (mod-A,Ab)fp,
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(ii) the Serre subcategories S ⊆ (A-mod,Ab)fp,

(iii) the definable subcategories D ⊆ Mod-A and

(iv) the definable subcategories D ⊆ A-Mod.

Here the bijection between (i) and (ii) is due to elementary duality, and the

bijection between (i) and (iii) is given by D 7→ {F ∈ (mod-A,Ab)fp :
−→
F (X) =

0, ∀X ∈ D} and S 7→ {X ∈ Mod-A :
−→
F (X) = 0, ∀F ∈ S}. The bijection between

(ii) and (iv) is the same as the bijection between (i) and (iii) with mod-A and

Mod-A replaced by A-mod and A-Mod respectively.

Notation 2.4.13. Given a Serre subcategory S ⊆ (mod-A,Ab)fp we will denote

the elementary dual Serre subcategory by Sd, that is Sd = {F d : F ∈ S} ⊆
(A-mod,Ab)fp.

Similarly, given a definable subcategory D ⊆ Mod-A we will denote the elemen-

tary dual definable subcategory, associated to Sd by annihilation, by Dd ⊆ A-Mod.

We will also use this (−)d notation for the inverse map. That is, if S ⊆
(A-mod,Ab)fp is a Serre subcategory Sd ⊆ (mod-A,Ab)fp is the dual Serre sub-

category and similarly for definable subcategories.

In order to give an important example of elementary duality, we introduce the

following definitions.

Definition 2.4.14. Let C be a finitely accessible category. A monomorphism

m : X → Y in C is said to be a pure monomorphism if for every f : A→ B in

Cfp and for all morphisms h : A → X and h′ : B → Y such that h′ ◦ f = m ◦ h
there exist some k : B → X such that k ◦ f = h.

A B

X Y

f

h h′

m

k
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Remark 2.4.15. If C is locally finitely presented (that is finitely accessible, complete

and cocomplete), pure monomorphisms can be characterised as those monomor-

phism m : X → Y which fit into an exact sequence

0→ X
m−→ Y

p−→ Z → 0

such that for every A ∈ Cfp,

0→ (A,X)
(A,m)−−−→ (A, Y )

(A,p)−−−→ (A,Z)→ 0

is exact in Ab (see [49, Theorem 5.2]).

Definition 2.4.16. Let A be a skeletally small preadditive category. A right

A-module, M , is said to be flat if M ⊗A − : A-Mod→ Ab is exact.

Let C be a finitely accessible category. An object M ∈ C is said to be abso-

lutely pure if every monomorphism M → N with domain M is a pure monomor-

phism. An object M ∈ C is said to be fp-injective if for every monomorphism

f : A→ B with finitely presented cokernel, and every morphism k : A→M , there

exists a morphism l : B →M such that k = l ◦ f .

Proposition 2.4.17. [49, Proposition 5.6] Let C be a locally finitely presented

abelian category. Then an object M ∈ C is absolutely pure if and only if it is

fp-injective.

Definition 2.4.18. Let C be a finitely accessible category. An object A ∈ Cfp is

said to be finitely generated if (A,−) preserves direct limits of monomorphisms.

An object A ∈ Cfp is said to be coherent if every finitely generated subobject of

A is finitely presented. We say that the category C is locally coherent if the full

subcategory of coherent objects, denoted Ccoh, is skeletally small and every object

X ∈ C can be written as a direct limit of a directed system of objects from Ccoh.

Example 2.4.19. [49, Example 8.2] Suppose A-Mod is locally coherent (for ex-

ample A = Cfp where C is a finitely accessible category with products (see [49,

Theorem 6.1])). Let Flat-A ⊆ Mod-A denote the full subcategory of flat right



2.4. PURITY IN FINITELY ACCESSIBLE CATEGORIES 31

A-modules. Similarly, let A-Abs ⊆ A-Mod denote the full subcategory of abso-

lutely pure left A-modules. Then Flat-A and A-Abs are elementary dual definable

subcategories.

Now let C be a finitely accessible category with products. We define the canon-

ical language for C, denoted L (C), to be the language of right Cfp-modules. We

identify objects of C with structures of the language via the restricted Yoneda func-

tor. That is, given X ∈ C, we can define a structure in the canonical language for

C, with universe
(
C(C,X)

)
C∈Cfp , the + and 0 in each sort giving the abelian group

structure on the hom-set and for each f : A→ B in Cfp, the interpretation in X of

the function symbol f of arity B → A given by −◦ f = (f,X) : (B,X)→ (A,X).

With this interpretation in mind, rather than writing the term f(xB) where f is

the function symbol of arity B → A, we will write xB ◦ f or just xBf .

The languages L (C) and LCfp are the same and therefore, the pp formulas and

pp-pairs are the same. However we are most interested in the L (C)-structures

induced by the objects X ∈ C, that is the structures corresponding to the rep-

resentable functors (−, X)|Cfp . Recall that pp-pairs φ/ψ and φ′/ψ′ in the lan-

guage LCfp are equivalent on Mod-Cfp if φ(F )/ψ(F ) = φ′(F )/ψ′(F ) for all functors

F ∈ Mod-Cfp. For pp-pairs in the language L (C), we assert that φ/ψ and φ′/ψ′

are equivalent on C if

φ(X)/ψ(X) = φ′(X)/ψ′(X)

for all X ∈ C. Here the L (C)-structure X is equal to the LCfp-structure (−, X)|Cfp .

So if two pp-pairs are equivalent on Mod-Cfp then they are certainly equivalent on

C.
Since Cfp is closed under finite direct products, every pp formula in L (C) is

equivalent on C to a pp formula with one free variable. More specifically we have

the following result.

Proposition 2.4.20. (see e.g. [49, Section 18]) Let C be a finitely accessible

category with arbitrary products. Every pp formula in the canonical language for

C is equivalent on C to a pp-formula of the form
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∃yB (xAf = yBg)

where f : C → A and g : C → B are morphisms in Cfp.

We define the category L(C)eq+ of pp-pairs in the canonical language for C to

have objects given by pp-pairs and morphisms given by pp-definable maps but

this time we say that a pp formula ρ(x, y) is said to be a pp-definable map from

φ/ψ to φ′/ψ′ if for all X ∈ C, ρ(X) is the graph of a group homomorphism from

φ(X)/ψ(X) to φ′(X)/ψ′(X). Notice that if two pp-pairs are equivalent on C, then

they are isomorphic as objects of L(C)eq+ but may not be isomorphic as objects

in Leq+
Cfp .

By Theorem 2.4.5, the category Leq+
Cfp of pp-pairs in the language for right Cfp-

modules is equivalent to (mod-Cfp,Ab)fp. We will show that the category L(C)eq+

is equivalent to a Serre localisation of (mod-Cfp,Ab)fp.

Now we give the definition of a definable subcategory of a finitely accessible

category with products.

Definition 2.4.21. Let C be a finitely accessible category with products. A full

subcategory D ⊆ C is said to be definable if it is closed in C under products, direct

limits and pure subobjects. A definable category is a definable subcategory of

some finitely accessible category with products.

Remark 2.4.22. We will see below (see Proposition 2.4.27 and the commentary

there after) that every definable category is equivalent to a definable subcategory

of a module category, Mod-A, for some small preadditive category A.

We can use the definable subcategories of a finitely accessible category with

product to define a topology called the Ziegler spectrum.

Definition 2.4.23. We say that an object E ∈ C is pure-injective if it is injective

over pure monomorphisms, that is for every pure monomorphism m : X → Y in C
and any morphism k : X → E there exists some h : Y → E such that k = h ◦m.

In fact, each finitely accessible category with products has, up to isomorphism,

a set of indecomposable pure-injective objects (see [60, Corollary 4.2(1)]) and each
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definable subcategory is generated as such by its indecomposable pure-injectives.

They form the underlying set of a topological space called the Ziegler spectrum.

Definition 2.4.24. We define the Ziegler spectrum of C, denoted Zg(C), to

have underlying set given by the set of isomorphism classes of indecomposable

pure-injectives in C, denoted pinjC, and closed subsets given by

{[X] ∈ pinjC : X ∈ D}

where [X] denotes the isomorphism class of the indecomposable pure-injective X

and D runs through the definable subcategories of C.

Proposition 2.4.25. ([60, Theorem 4.9], also see [49, Theorem 14.1]) Let C be a

finitely accessible category with products. The closed subsets described above define

a topology on pinjC.

Next we show that the definable subcategories of C can be defined in the same

way as the definable subcategories of a module category.

Proposition 2.4.26. (see [49, Theorem 19.4]) A full subcategory D ⊆ C is a

definable subcategory if and only if it has form

D = {X : φλ(X)/ψλ(X) = 0 ∀λ ∈ Λ}

where {φλ/ψλ}λ∈Λ is a set of pp-pairs in the canonical language, L (C).

Indeed, the following result tells us that a finitely accessible category with

products C is equivalent to a definable subcategory of a module category.

Proposition 2.4.27. [49, Theorem 3.4(2) and Theorem 6.1(b)(v)] Let C be a

finitely accessible category with products. Then C ' Flat-Cfp, and Flat-Cfp ⊆
Mod-Cfp is a definable subcategory, where Flat-Cfp ⊆ Mod-Cfp denotes the full

subcategory of flat right Cfp-modules.

Thus the definable subcategories of C can be viewed as definable subcategories

of Mod-Cfp. Let SFlat ⊆ (mod-Cfp,Ab)fp denote the Serre subcategory consist-

ing of all functors F such that
−→
F (X) = 0 for all X ∈ Flat-Cfp. Therefore if
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D ⊆ Flat-Cfp ⊆ Mod-Cfp is a definable subcategory, then the associated Serre

subcategory S ⊆ (mod-Cfp,Ab)fp (as in Theorem 2.4.12) must contain SFlat since

any F ∈ SFlat annihilates all flat right Cfp-modules and so definitely annihilates

all modules in D. Consequently, we have a one-to-one correspondence between

the definable subcategories of C and the Serre subcategories of the localisation

(mod-Cfp,Ab)fp/SFlat. Next we show that the localisation (mod-Cfp,Ab)fp/SFlat is

equivalent to Cfp-mod.

Lemma 2.4.28. (see [49, Corollary 3.5]) Let A be a finitely accessible abelian

category. Then A is locally coherent if and only if Afp is abelian.

Lemma 2.4.29. [48, Theorem 11.1.44] Let A be a locally coherent abelian category

(for example when A = Cfp-Mod where C is a finitely accessible category with

products (see [49, Theorem 6.1])). Then for any pp-pair φ/ψ in the language

L (A) there exists some A′ ∈ Cfp such that for every absolutely pure object M ∈ C,

φ(M)/ψ(M) ∼= (A′,M).

Remark 2.4.30. We have seen that any pp-pair φ/ψ in L (C) gives rise to a

finitely presented functor Ff ∈ (Cfp-mod,Ab)fp. Suppose that Ff has presen-

tation (B,−)
(f,−)−−−→ (A,−)→ Ff → 0 where f : A→ B is a morphism in Cfp-mod.

As Cfp-Mod is locally coherent and abelian, Cfp-mod is abelian by Lemma 2.4.28 .

We can take the A′ from Lemma 2.4.29 to be the kernel of f . Indeed, suppose we

have exact sequence 0→ A′
ker(f)−−−→ A

f−→ B, then the abelian group homomorphism

(A,M)/(f,M)→ (A′,M) given by h+(f,M) 7→ h◦ker(f) is one-to-one as ker(f)

is a monomorphism and onto as M is absolutely pure and therefore fp-injective by

Proposition 2.4.17, so every morphism A′ →M factors through ker(f).

Lemma 2.4.31. There exists an equivalence of categories (mod-Cfp,Ab)fp/SFlat '
Cfp-mod.

Proof. By Theorem 2.4.12 and properties of Serre localisation, elementary duality

induces an equivalence

(mod-Cfp,Ab)fp/SFlat ' ((Cfp-mod,Ab)fp/SdFlat)
op.
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By Example 2.4.19, SdFlat = SAbs ⊆ (Cfp-mod,Ab)fp consists of all the functors

which annihilate all absolutely pure left Cfp-modules. Thus two functors F and

G are isomorphic in (Cfp-mod,Ab)fp/SAbs if and only if the restriction of
−→
F and

−→
G to absolutely pure modules are isomorphic. Therefore by Lemma 2.4.29 and

Remark 2.4.30, Ff 7→ ker(f) ∈ Cfp-mod and A 7→ (A,−) ∈ (Cfp-mod,Ab)fp/SAbs

induce an equivalence ((Cfp-mod,Ab)fp/SAbs)
op ' Cfp-mod as required. �

Theorem 2.4.32. [49, Theorem 22.1] The category L(C)eq+ of pp-pairs in the

canonical language for C is equivalent to the category Cfp-mod.

In Theorem 2.4.33 below we summarise the connections between definable sub-

categories of C, Serre subcategories of Cfp-mod and closed subsets of the Ziegler

spectrum.

Theorem 2.4.33. (see [49, Theorem 14.2]) Let C be an additive finitely accessible

category with products. There exist natural bijections between:

(i) the definable subcategories D of C,

(ii) the closed subsets C of the Ziegler spectrum Zg(C),

(iii) the Serre subcategories S of Cfp-mod.

The bijection between (i) and (iii) is given by D 7→ {F ∈ Cfp-mod :
−→
F (X) =

0, ∀X ∈ D} and S 7→ {X ∈ C :
−→
F (X) = 0, ∀F ∈ S} and the bijection between (i)

and (ii) is given by D 7→ D ∩ pinjC and C 7→
〈
C
〉def

.

Below we give key properties of the 2-category anti-equivalence between ABEX
and DEF. See [51] for full details.

Definition 2.4.34. Let DEF denote the 2-category with objects given by definable

categories, 1-morphisms given by additive functors which preserve direct products

and direct limits and 2-morphisms given by natural transformations.

Let ABEX denote the 2-category with objects given by skeletally small abelian

categories, 1-morphisms given by additive exact functors and 2-morphisms given

by natural transformations.
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Remark 2.4.35. Recall that the objects in a definable subcategory D of a finitely

accessible category C correspond to a class of L (C)-structures which are axioma-

tised by some collection of pp-pairs. The 1-morphisms in DEF are given by model

theoretic interpretation functors. An additive functor I : D → D′ which commutes

with direct products and direct limits gives rise to a model theoretic interpretation

of I(D) in D (e.g. see [48, Corollary 18.2.19]).

Theorem 2.4.36. [51, Theorem 2.3] There exists a 2-category anti-equivalence

between ABEX and DEF given on objects by A 7→ Ex(A ,Ab) and D 7→ fun(D) :=

(D,Ab)Π→, where Ex(A ,Ab) is the category of exact functors from A to the

category of abelian groups and (D,Ab)Π→ is the category of additive functors from

D to the category of abelian groups which commute with direct products and direct

limits.

On morphisms the equivalence works in both directions by mapping an appro-

priate functor, say F , to precomposition by F , −◦F , and on 2-morphisms it works

in the obvious way.

Theorem 2.4.37. (see [49, Theorem 12.10], [34, Theorem 7.2] for the case D = C)

Given a definable subcategory D of a finitely accessible category C with products,

fun(D) := (D,Ab)Π→ ' Cfp-mod/S where S ⊆ Cfp-mod is the Serre subcategory

corresponding to D (as in Theorem 2.4.33).

Given a finitely presented functor F ∈ Cfp-mod, the restriction to D of its

extension along direct limits, (
−→
F )|D : D → Ab, commutes with direct products

and direct limits and therefore is an object of fun(D). Let S ⊆ Cfp-mod be the Serre

subcategory corresponding to D and recall that Cfp-mod/S is given by formally

inverting the morphisms in ΣS = {α ∈ morph(Cfp) : ker(α), coker(α) ∈ S}. Since

every morphism in ΣS is an isomorphism when evaluated at any D ∈ D, by the

universal property of the localisation, the functor (
−→−)|D : Cfp-mod → fun(D)

factors via the localisation Cfp-mod/S. The equivalence in Theorem 2.4.37 is given

by the exact functor (
−→−)|D : Cfp-mod/S→ fun(D) induced by this factorisation.
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2.5 Purity in compactly generated triangulated

categories

Definition 2.5.1. Let T be a triangulated category with small coproducts. An

object C ∈ T is said to be compact if the canonical morphism
∐

i∈I(C,Xi) →
(C,
∐

i∈I Xi) is an isomorphism for every set {Xi : i ∈ I} of objects of T .

A triangulated category T with small coproducts is said to be compactly gen-

erated if T c, the full subcategory of compact objects, is skeletally small and for

every X ∈ T , (T c, X) = 0 implies X = 0.

Fix a compactly generated triangulated category T and denote the full sub-

category of compact objects by T c.
The restricted Yoneda functor H : T → Mod-T c maps X ∈ T to HX :=

T (−, X)|T c . Note that H is not a faithful functor and we call the morphisms f :

X → Y in T such that Hf : T (−, X)|T c → T (−, Y )|T c is zero, phantom maps.

If we complete a phantom map f to an exact triangle in T , say

X
f−→ Y

f ′−→ Z
f ′′−→ ΣX

then f ′ has the following property. For any k : A → Y such that A ∈ T c, if

f ′ ◦ k = 0 then k = 0. That is, f ′ acts like a monomorphism but only when pre-

composing with morphisms with source in T c. We say that f ′ is a pure monomor-

phism. Note that f ′ : Y → Z is a pure monomorphism if and only if Hf ′ is a

monomorphism. Indeed, given an exact triangle

Y
f ′−→ Z

f ′′−→ ΣX
Σf−→ ΣY,

with f ′ a pure monomorphism, for every C ∈ T c, 0→ (C, Y )
(C,f ′)−−−→ (C,Z)

(C,f ′′)−−−→
(C,ΣX) → 0 is exact in Ab. Such an exact triangle is called a pure-exact

triangle.

If every pure-exact triangle

Y
f ′−→ Z

f ′′−→ ΣX
Σf−→ ΣY,
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splits, then Y ∈ T is called pure-injective. We denote the full subcategory

of indecomposable pure-injectives of T by pinjT . This is a skeletally small cate-

gory (e.g. see [27, p.3]) and we also use the notation pinjT to denote the set of

isomorphism classes of objects of pinjT .

The restricted Yoneda functor, H : T → Mod-T c restricts to an identification

between the pure-injective objects of T and the injective objects of Mod-T c (see

for example [27, p.3]). Furthermore, if Y ∈ T is pure-injective and X ∈ T is

arbitrary, then H induces an isomorphism T (X, Y ) ∼= Mod-T c(HX , HY ) (e.g. [12,

Remark 2.6]).

Next we define the canonical language for T and give some results about pp

formulas in this language.

Definition 2.5.2. The canonical language for T , denoted L (T ), has a sort

for each isomorphism class of compact objects, a binary function symbol +C of

arity C × C → C and a constant symbol 0C for each sort C ∈ T c and a unary

function symbol f of arity B → A for each morphism f : A→ B in T c.

Each X ∈ T then becomes a L (T )-structure with (C,X) as the underlying set

of arity C ∈ T c, the interpretations of +C and 0C giving the additive abelian group

structure on (C,X) and the interpretation of the unary function symbol f : B → A

associated to the morphism f : A → B in T c, given by pre-composition with f ,

that is − ◦ f = (f,X) : (B,X)→ (A,X).

We say that two pp formulas, ψ and φ, are equivalent on T if for all X ∈ T ,

ψ(X) = φ(X). The following result means we can restrict to working with ‘division

formulas’.

Proposition 2.5.3. ([27, Proposition 3.1]) Every pp formula in the language

L (T ) is equivalent to a pp formula of the form ∃yB xA = yBf for some mor-

phism f : A→ B in T c.

Let us denote the pp formula ∃yB xA = yBf by φf . Therefore, to each mor-

phism in T c we can associate a pp formula φf .

Proposition 2.5.4. Pp formulas φf and φf ′ where f : A → B and f ′ : A → B′

are equivalent if and only if there exist morphisms k : B → B′ and l : B′ → B

such that f = l ◦ f ′ and f ′ = k ◦ f .
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Proof. Suppose φf and φf ′ are equivalent. Then φf (B) = φf ′(B), so f ∈ φf (B) =

φf ′(B). Therefore, there exists l : B′ → B such that f = l ◦ f ′. Similarly,

f ′ ∈ φf (B′) so there exists some k : B → B′ such that f ′ = k ◦ f .

Conversely, if f = l ◦ f ′ and f ′ = k ◦ f , then g : A → X is in φf (X) implies

g = g′ ◦ f . But then g = g′ ◦ l ◦ f ′, so g ∈ φf ′(X). Similarly, if g ∈ φf ′(X) then

g ∈ φf (X). So φf and φf ′ are equivalent. �

As in the finitely accessible case, to each pp formula φ in L (T ), we can asso-

ciate a functor Fφ : T → Ab given on objects by Fφ(X) = φ(X).

Definition 2.5.5. A functor F : T → Ab is said to be coherent if it is an

additive functor for which there exists A,B ∈ T c such that F has presentation

T (B,−)→ T (A,−)→ F → 0.

Denote by Coh(T ) the category of coherent functors.

Notation 2.5.6. In future, we will suppress the notation T (−,−) in favour of

(−,−). For a morphism f : A → B in T c, we denote the coherent functor

F : T → Ab with presentation (B,−)
(f,−)−−−→ (A,−) → F → 0 by Ff . Simi-

larly we denote the finitely presented functor G : (T c)op → Ab with presentation

(−, A)
(−,f)−−−→ (−, B)→ G→ 0 by Gf .

Proposition 2.5.7. [27, Lemma 4.3] Suppose φ is a pp formula in the language

L (T ). The functor Fφ : T → Ab given by X 7→ φ(X) is a coherent functor

and for any coherent functor F , there exists a pp formula φ, such that F ∼= Fφ in

Coh(T ) .

Indeed given the division formula φf where A
f−→ B

g−→ C → ΣA is an exact

triangle in T c, Fφf has presentation

(C,−)
(g,−)−−−→ (B,−)→ Fφf → 0.

That is, Fφf = Fg (see Notation 2.5.6). Equivalent pp formulas give rise to the

same coherent functor.
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Note that a coherent functor Fg ∈ Coh(T ) is isomorphic to the cokernel of

(C,−)
(g,−)−−−→ (B,−) and to the cokernel of (C ′,−)

(g′,−)−−−→ (B′,−) if and only if

there exist morphisms B → B′, B′ → B, C → C ′ and C ′ → C such that the

following diagrams commute.

B C

B′ C ′

g

g′

B C

B′ C ′.

g

g′

In this case, there exist morphisms of exact triangles in both directions between

A
f−→ B

g−→ C → ΣA and A′
f ′−→ B′

g′−→ C ′ → ΣA′. Therefore, Fφf
∼= Fφf ′ if and

only if there exist morphisms k : B → B′, l : B′ → B, m : A→ A′ and n : A′ → A

such that the following diagrams commute in T c.

A B

A′ B′

f

m k

f ′

A B

A′ B′.

f

n l

f ′

In this case we will say that the pp formulas φf and φf ′ are isomorphic.

These pp formulas may not be equivalent, indeed their free variables may be of

different sorts. However, for each X ∈ T , the solution sets φf (X) and φf ′(X)

are isomorphic as abelian groups and give rise to naturally isomorphic coherent

functors.

Next we introduce the definable subcategories of a compactly generated trian-

gulated category.

Definition 2.5.8. A full subcategory D ⊆ T is said to be definable if it has form

D = {X ∈ T : Fi(X) = 0 ∀i ∈ I},

where {Fi : i ∈ I} is a family of coherent functors.

By Proposition 2.5.7 we could also define definable subcategories in terms of
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pp formulas. Indeed, for every definable subcategory D, there exists a collection

of pp formulas, {φλ : λ ∈ Λ} such that X ∈ D if and only if the sentences

∀xλ(φλ(xλ) ↔ xλ = 0) hold in the L (T )-structure X for all λ ∈ Λ. Here for

simplicity we have simply written xλ to denote the free variables in φλ without

specifying sorts.

Next we provide Krause’s Fundamental Correspondence. First we need two

more definitions.

Definition 2.5.9. We say that an ideal, J , of morphisms in T c is a cohomo-

logical ideal, if there exists a cohomological functor F : T c → Ab such that

J = {f ∈ morph(T c) : F (f) = 0}.

Definition 2.5.10. Let pinjT denote the set of isomorphism classes of indecom-

posable pure-injectives in T . We define a topology on pinjT called the Ziegler

spectrum of T . Say that C ⊆ pinjT is a closed subset of the Ziegler spectrum of

T if and only if C = D∩pinjT for some definable subcategory D ⊆ T . We denote

the Ziegler spectrum by ZgT .

Theorem 2.5.11. [36, Fundamental Correspondence] There is a bijective corre-

spondence between:

(i) the definable subcategories of T ,

(ii) the Serre subcategories of Coh(T ) ,

(iii) the cohomological ideals of T c,

(iv) the closed subsets of ZgT .

Here a definable subcategory, D, corresponds to the Serre subcategory, S, of

coherent functors which annihilate D, the closed subsets of ZgT are given by D ∩
pinjT and the cohomological ideal of T c is given by J = {f ∈ morph(T c) :

(f,X) = 0 ∀X ∈ D}. Throughout the rest of this thesis, we will say that D, S,

and J as above correspond if they are associated as in Theorem 2.5.11.

In the remainder of this subsection we will relate definability in T to defin-

ability in Mod-T c. Recall that a right T c-module M is absolutely pure if every
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monomorphism with domain M is a pure monomorphism and denote the full sub-

category of absolutely pure modules by Abs-T c. In Mod-T c the absolutely pure

modules satisfy the following.

Proposition 2.5.12. [6, Proposition 1.8] Any functor F ∈ Mod-T c is absolutely

pure if and only if it is flat.

In particular, for every X ∈ T , the image of the restricted Yoneda functor HX

is both absolutely pure and flat. Recall that when Mod-T c is locally coherent,

Abs-T c is definable (see Example 2.4.19). Denote by Zg(Abs-T c) the intersection

pinjMod-T c ∩ Abs-T c with the subspace topology.

The following Theorem was proved in [6].

Theorem 2.5.13. [6, Theorem 1.10] The restricted Yoneda functor induces a

homeomorphism between Zg(T ) and Zg(Abs-T c).

Corollary 2.5.14. The restricted Yoneda functor H : T → Mod-T c induces a

bijective correspondence between the definable subcategories of T and the definable

subcategories of Abs-T c, the absolutely pure right T c-modules.

2.6 Rigidly-compactly generated tensor triangu-

lated categories

Definition 2.6.1. A triangulated category K is said to be tensor triangulated

(or a tt-category) if it has a symmetric monoidal structure (⊗, 1) such that the

tensor product −⊗− : K ×K → K is triangulated in each variable.

Definition 2.6.2. If T is a tensor triangulated category which is compactly gen-

erated and the subcategory of compact objects T c forms a rigid monoidal sub-

category such that (−)∨ : (T c)op → T c is an exact functor, we say that T is a

rigidly-compactly generated tensor triangulated category.
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2.6.1 Tensor triangular geometry

We will give some brief background on tensor triangular geometry. Most of the

below holds in a more general setting, however here we focus on the Balmer spec-

trum of a skeletally small rigid monoidal category. See [57] for a short survey

giving more details.

Definition 2.6.3. Suppose K is a skeletally small triangulated category. A sub-

category I ⊆ K is said to be:

(i) closed under extensions or extension-closed if for every exact triangle

X → Y → Z → ΣX, if X, Z ∈ I then Y ∈ I.

(ii) shift-closed if X ∈ I if and only if ΣX ∈ I, equivalently, I is closed under

both positive and negative powers of the shift functor Σ.

(iii) triangulated if it is both closed under extensions and shift-closed.

(iv) thick, if it is triangulated and closed under direct summands.

Definition 2.6.4. Suppose K is a skeletally small rigid symmetric tensor triangu-

lated category. A thick subcategory I ⊆ K is said to be a thick tensor-ideal if for

every X ∈ I and Y ∈ K, X ⊗ Y ∈ I. We denote the lattice of thick tensor-ideals

of K by Thick⊗(K). A thick tensor-ideal I is said to be radical if for all X ∈ K,

if X⊗n = X ⊗ ...⊗X ∈ I for some n ≥ 1 then X ∈ I. A thick tensor-ideal P ⊆ K
is said to be prime if for all X, Y ∈ K, if X ⊗ Y ∈ P then X ∈ P or Y ∈ P . We

call these the prime tensor-ideals of K.

Remark 2.6.5. In the case that K is rigid, every tensor-ideal is radical, by for

example [57, Remark 1.8].

Note that since K is skeletally small, and all our subcategories are closed under

isomorphism, there is a set of prime tensor-ideals of K. Let Spc(K) denote the set

of prime tensor-ideals of K. We define a topology on Spc(K) which we call the

Balmer spectrum of K (as introduced in [8]). Given any collection of objects

X ⊆ K, we define a closed subset of Spc(K) to be

Z(X ) = {P ∈ Spc(K) : X ∩ P = ∅}.
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If X ∈ K we call Z({X}) the support of X and denote it by supp(X). Note that

Z(X ) =
⋂
X∈X

supp(X) so the supports of objects in K form a basis of closed sets.

Next we see that the Balmer spectrum satisfies a universal property.

Definition 2.6.6. Given a (small) tensor triangulated category (K,⊗, 1) a sup-

port data on K is a pair (X, σ) where X is a topological space and σ assigns to

each A ∈ K a closed subset σ(A) of X such that the following conditions hold:

(i) σ(0) = ∅ and σ(1) = X

(ii) σ(A⊕B) = σ(A) ∪ σ(B)

(iii) σ(ΣA) = σ(A)

(iv) σ(A) ⊆ σ(B) ∪ σ(C) for all triangles A→ B → C → ΣA

(v) σ(A⊗B) = σ(A) ∩ σ(B).

Definition 2.6.7. Given a topological space X, a subset Y ⊆ X is said to be

specialization closed if Y =
⋃
y∈Y
{y}, where {y} denotes the smallest closed

subset of X containing y.

Theorem 2.6.8. ([8, Theorem 3.2 and Theorem 5.2], [18, Proposition 6.1])

(Spc(K), supp(−)) is a support data and for any support data (X, σ), there ex-

ists a unique continuous map f : X → Spc(K) such that σ(A) = f−1(supp(A)) for

any A ∈ K. Moreover, if X is a spectral space and there exists a bijection

θ : { specialization closed
subsets of X

} → { radical thick tensor-ideals
of K },

given by Y 7→ {A ∈ K : σ(A) ⊆ Y } and J 7→ σ(J ) := ∪A∈Jσ(A), then f is a

homeomorphism. In this case we call (X, σ) a classifying support data.

Definition 2.6.9. Given a spectral topological space X the Thomason subsets

of X are of the form
⋃
i∈I
Yi where each Yi is a closed subset of X with quasi-compact

open complement.
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By [57, Remark 1.29] the Thomason subsets of Spc(K) have form
⋃
X∈X

supp(X),

where X is some collection of objects of K. We denote by Thom(K) the collection

of Thomason subsets of Spc(K). Note that Thom(K) forms a lattice with join

given by union and binary meet given by intersection.

Definition 2.6.10. (see [22, Definition 0.1]) Given a spectral topological space X

we can define the Hochster dual of X, denoted X∗. This is the topology on the

same set of points, X, with the closed sets generated by the quasi-compact open

sets in the original topology.

In [30], Hochster showed that X∗ is also spectral and (X∗)∗ ' X.

By ([57, Theorem 1.21]), Spc(K) is spectral for any skeletally small tensor

triangulated category K with a closed monoidal structure. The quasi-compact

opens in Spc(K) are those of the form U(X) = Spc(K)\supp(X) for X ∈ K, ([8,

Proposition 2.14]). Therefore (Spc(K))∗ has closed sets of the form⋂
X∈X

(Spc(K)\supp(X)),

where X is some class of objects of K.

Hence the open subsets of the Hochster dual of the Balmer spectrum of K are

those of the form
⋃
X∈X

supp(X), that is, exactly the Thomason subsets of Spc(K).

Theorem 2.6.11. (see [57, Theorem 1.30]) Let K be a rigid, skeletally small,

tensor triangulated category. There exists an isomorphism of lattices

σ : Thick⊗(K)
∼−→ Thom(K),

given by σ : I 7→
⋃
X∈I

supp(X) with inverse τ : Thom(K)
∼−→ Thick⊗(K) given by

τ : V 7→ {X ∈ K : supp(X) ⊆ V }.

2.6.2 Two examples

In this section we will give more details of the tensor triangulated structure in two

examples.
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2.6.2.1 The derived category of a module category

Suppose R is a commutative ring. Let us describe the rigidly-compactly generated

tensor triangulated structure on the unbounded derived category D(R-Mod).

D(R-Mod) is a localisation of the category of chain complexes Ch(R-Mod)

formed by formally inverting all quasi-isomorphisms. We will index a (co)chain

complex X• by

X• : ...→ X−2 d−2

−−→ X−1 d−1

−−→ X0 d0

−→ X1 d1

−→ X2 → ....

The translation functor Σ in D(R-Mod) maps X• to

X•[1] : ...→ X−1 −d−1

−−−→ X0 −d0

−−→ X1 −d1

−−→ X2 −d2

−−→ X3 → ...

and will be denoted by [1]. That is the ith degree of X•[1] is X i+1. For an R-

module, M , we will denote by M [−n] the chain complex (or corresponding object

of D(R-Mod)) given by M concentrated in the nth degree and zeros elsewhere.

Definition 2.6.12. Given a chain morphism f : X• → Y • we define the mapping

cone of f to be the complex

cone(f) : ...→ X0 ⊕ Y −1

−d0
X 0

f0 d−1
Y


−−−−−−−−−→ X1 ⊕ Y 0

−d1
X 0

f1 d0
Y


−−−−−−−−→ X2 ⊕ Y 1 → ...

where the ith degree is X i+1 ⊕ Y i.

The distinguished triangles in D(R-Mod) are those isomorphic to a triangle of

the form

X•
f−→ Y • → cone(f)→ X•[1].

The compact objects of D(R-Mod) are given by the perfect complexes

Dperf(R-Mod) ∼= Kb(R-proj) that is the complexes isomorphic in D(R-Mod) to

bounded complexes of finitely generated projective objects.

The tensor product on D(R-Mod) is given by the left derived tensor product

− ⊗L
R − and the tensor-unit is given by R[0]. The internal hom-functor is given
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by the right derived hom RHom(−,−) and the dualisable objects coincide with

the compact objects. With this monoidal structure, D(R-Mod) forms a rigidly-

compactly generated tensor triangulated category.

2.6.2.2 The stable module category

Throughout this section, let G be a finite group and k be a field. We denote

the group algebra by kG, the category of finitely generated left kG-modules by

kG-mod and the category of all kG-modules by kG-Mod.

kG is a cocommutative Hopf algebra with comultiplication given by diagonal

action on the elements of G and extending k-linearly, the counit is determined by

g 7→ 1 for all g ∈ G and the antipode takes g ∈ G to g−1. A consequence of this

Hopf algebra structure is the following. Given kG-modules M and N , M⊗kN and

Homk(M,N) both have kG-module structures where the action of kG on M ⊗kN
is determined by g(m ⊗k n) = gm ⊗k gm and the action of kG on Homk(M,N)

is determined by (gf) : M → N satisfying (gf)(m) = gf(g−1m). If M and N

are finite dimensional over k (equivalently finitely generated as kG-modules) then

M∨∨ ∼= M and M∨ ⊗k N ∼= Homk(M,N) as kG-modules (e.g. [14, Section 3.1]).

Therefore, if M is finitely generated we call the kG-module Homk(M,k) the dual

of M and denote it by M∨. In other words ⊗k defines a closed symmetric monoidal

structure on kG-Mod such that the full subcategory of finitely generated modules

kG-mod is a rigid monoidal subcategory.

Now let us describe the tensor triangulated structure of the stable module

category. To define the stable module category in full generality we introduce the

following definition.

Definition 2.6.13. (e.g. [55, Section 18]) A ring R is quasi-Frobenius (QF) if it

is both right and left artinian and right and left self-injective.

Example 2.6.14. Let G be a finite group and k be a field. The group algebra kG

is a quasi-Frobenius ring.

Definition 2.6.15. Given a QF ring R, the stable module category R-Mod
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has the same objects as R-Mod and morphisms given by

Hom(X, Y ) = HomR(X, Y )/Proj(X, Y )

where Proj(X, Y ) denotes the group of morphisms from X to Y which factor

through a projective module.

Now let us restrict to the case where R is the group algebra of a finite group

G over a field k. In this case kG-Mod is a rigidly-compactly generated tensor

triangulated category. Indeed, the full subcategory of projective objects is a tensor-

ideal and therefore the closed symmetric monoidal structure given by ⊗k, induces

a monoidal structure on the stable module category.

The shift functor is Σ = Ω−1 where for any M ∈ R-Mod, given an injective

envelope 0 → M → I, Ω−1(M) fits into a short exact sequence 0 → M → I →
Ω−1(M) → 0 in R-Mod. Every short exact sequence 0 → X → Y → Z → 0 in

kG-Mod, gives rise to an exact triangle X → Y → Z → Ω−1X in kG-Mod and

every exact triangle in kG-Mod arises in this way.

The subcategory of compact objects is the full subcategory of finitely generated

modules, denoted by kG-mod. Note that the dual of a compact object M ∈
kG-mod is given by M∨ = Homk(M,k).

By Maschke’s Theorem if the characteristic of k is coprime to |G|, kG is semi-

simple. Therefore, for the rest of this section let k denote a field of positive

characteristic p and G denote a finite group such that p divides the order of G.

The following theorem characterises the representation type of different group

algebras kG.

Theorem 2.6.16. (see [14, Theorem 4.4.4]) Let G be a finite group and k be an

infinite field of characteristic p.

(i) kG is of finite representation type if and only if G has cyclic Sylow p-

subgroups.

(ii) kG is of domestic representation type if and only if char k = 2 and the Sylow

2-subgroups of G are isomorphic to the Klein four group.
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(iii) kG has tame representation type if and only if char k = 2 and the Sylow

2-subgroups of G are dihedral, semidihedral or generalised quaternion.

(iv) In all other cases kG is of wild representation type.

Throughout this thesis we will look more closely at the following two examples.

Examples 2.6.17. (i) (Finite representation type) Suppose G =
〈
g | g5 = 1

〉
is the cyclic group of order five and let k be a field of characteristic 5.

(ii) (Domestic representation type) Let G = V4 be the Klein four group, that is

V4 =
〈
x, y | x2 = y2 = [x, y] = eG

〉 ∼= C2 × C2 and k be an algebraically

closed field of characteristic 2.

The Ziegler spectrum of the stable module category of a QF ring is described in

[27] as follows. Let StZgR denote the subset of non-projective elements of ZgR-Mod

with the subspace topology. Then the set of indecomposable pure-injectives in

R-Mod, denoted by Zg(R-Mod), can be identified with StZgR. Indeed, the topol-

ogy on ZgR-Mod corresponds to the subspace topology on StZgR. Therefore, we

have the following.

Proposition 2.6.18. [27, Proposition 6.1] The Ziegler spectrum of a QF ring R

is homeomorphic to the disjoint union

O t ZgR-Mod,

where O denotes the finite clopen subset of indecomposable injectives (equivalently

indecomposable projectives).

In particular we have the following two examples.

Example 2.6.19. Suppose G =
〈
g | g5 = 1

〉
is the cyclic group of order 5 and

let k be a field of characteristic 5 as in Example 2.6.17 (i). Then kG ∼= k[T ]/(T 5)

under the isomorphism T 7→ g − 1. Set Mi = k[T ]/(T i) for i = 1, ..., 5. The

Mi form a complete list of the indecomposable finite dimensional modules up to

isomorphism, without repetitions (e.g. [14, Section 4.10]). These five modules
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form the points of the Ziegler spectrum of kG-Mod and the topology is discrete.

The only indecomposable projective modules is M5 and the Ziegler spectrum of

kG-Mod is discrete with four points, M1, M2, M3 and M4.

Next let us consider the Ziegler spectrum of the stable module category with G

given by the Klein four group and k an alegbraically closed field of characteristic

2. We use the following proposition.

Proposition 2.6.20. [14, Section 3.14] Let G be a p-group and k be a field of

characteristic p. Then kG has a unique minimal left ideal, denoted soc(kG) and

the non-projective indecomposable kG-modules correspond to the indecomposable

kG/soc(kG)-modules.

Example 2.6.21. [14, Section 4.3] Let G = V4 be the Klein four group, that is

V4 =
〈
x, y | x2 = y2 = [x, y] = eG

〉 ∼= C2×C2 and k be an algebraically closed field

of characteristic 2 as in Example 2.6.17 (ii).

We consider the algebra Λ = kV4/soc(kV4) as in Proposition 2.6.20. Note that

soc(kV4) =
〈
1 +x+ y+xy

〉
and Λ is 3-dimensional, generated by x− 1, y− 1 and

1 with (x− 1)2 = (y − 1)2 = (x− 1)(y − 1) = 0.

Let us consider the indecomposable pure-injective kG-modules. First note that

Λ = kG/soc(kG) is isomorphic to the path algebra of the quiver Q below factored

out by the ideal I = (a2, b2, ab, ba).

•a b

Thus Λ is a domestic string algebra and the indecomposable pure-injective Λ-

modules are string and band modules [53, Theorem 5.1].

For background on string algebras see for example [53], [39] [19], [54]. Here

we define string and band modules only for our quiver Q and ideal I.

A string v is a sequence v = vn...v1 of arrows from Q (in this case a and b) or

inverse arrows from Q (in this case a−1 and b−1) such that, aa−1, a−1a, bb−1 and
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b−1b appear nowhere in v, no subsequence of v of the form vi+j...vi is in I and no

subsequence of v−1 = v−1
1 ...v−1

n of the form v−1
i ...v−1

i+j is in I.

We list the strings and bands below:

(i) Finite strings

(a) ∅,

(b) n(b−1a), (a−1b)n, n ∈ N,

(c) n(ab−1), (ba−1)n, n ∈ N,

(d) n(b−1a)b−1, b(a−1b)n, n ∈ Z≥0,

(e) n(ab−1)a, a−1(ba−1)n, n ∈ Z≥0.

(ii) Infinite strings

(a) ∞(b−1a), (a−1b)∞, (contracting)

(b) ∞(a−1b), (b−1a)∞, (contracting)

(c) ∞(ba−1), (ab−1)∞, (expanding)

(d) ∞(ab−1), (ba−1)∞, (expanding)

(iii) Bands

(a) ba−1, ab−1,

Given a finite string vn...v1, n ≥ 1 we define the string module M(vn...v1) to

have underlying vector space kn+1 with standard basis x0, ..., xn and for α = a, b

we have

αxi =


xi+1 if vi+1 = α and i 6= n

xi−1 if v−1
i = α and i 6= 0

0 otherwise .

This can be visualised by drawing the string as a sequence of arrows where

direct arrows are drawn diagonally down from the right to the left and inverse

arrows are drawn diagonally down from the left to the right. One then labels the
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vertices x0, ..., xn from right to left and the action of α on xi is given by following

the arrow α starting at this vertex if it exists and declaring αxi = 0 otherwise.

For example, the module M(3(b−1a)) corresponds to the diagram below.

x6 x4 x2 x0

x5 x3 x1

aa babb

Given a string v = vn...v1 and its inverse v−1 = v−1
1 ...v−1

n , M(v) and M(v−1)

are isomorphic. Thus, for each (family of) pair(s) of finite strings (a)-(e) given

above we get a (family of) finite dimensional indecomposable pure-injective string

module(s).

In a similar way, we define infinite string modules. Here we have two choices.

Given a left N-string v = ...v2v1 we define the direct-sum module M(v) to have

underlying vector space
⊕

i∈N k and the direct-product module N(v) to have un-

derling vector space Πi∈Nk. In both cases we fix a basis x0, x1, ... and the action of

α = a, b is given by

αxi =


xi+1 if vi+1 = α

xi−1 if v−1
i = α and i 6= 0

0 otherwise ,

applied componentwise in the product module case.

Again an infinite string and its inverse give isomorphic string modules (so we

only define M(v) and N(v) for a left N-string here). Infinite string modules can

be visualised using infinite diagrams. For example the modules M(∞(ba−1)) and

N(∞(ba−1)) can both be depicted by the diagram below.

... x3 x1

... x4 x2 x0

aa bb
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By [53, Theorem 5.1], M(v) for v a contracting infinite string (cases (a) and

(b) above) and N(v) for v an expanding infinite string (cases (c) and (d) above) are

indecomposable pure-injective modules (note that so-called “mixed” infinite strings

don’t occur in this example).

Finally, we define the band modules for this example. For each indecom-

posable pure-injective k[T, T−1]-module M = (U,Φ), we denote by B(ab−1,M),

the Λ-module with underlying vector space U ⊕ U and action of a and b given

by a(x, y) = (y, 0) and b(x, y) = (Φy, 0). Note that since k is algebraically

closed, the indecomposable pure-injective k[T, T−1]-modules are indexed by λ ∈ k×,

n ∈ N∪{−∞,+∞}, with the additional generic module. We label our band modules

accordingly. Here for fixed λ ∈ k×, B(ab−1, λ,−∞) is the adic module given by the

inverse limit lim←−n B(ab−1, λ, n) of a coray of epimorphisms and B(ab−1, λ,∞) is

the Prüfer module given by the direct limit lim−→n B(ab−1, λ, n) of a ray of monomor-

phisms in a tube in the Auslander-Reiten quiver (see for example [48, Section 8.1.2]

for more details).

In particular, the band module B(ab−1, λ, n) for λ ∈ k× and n ∈ N has gener-

ators zi1 and zi2 for i = 1, ..., n and relations as follows.

azi1 = zi2, i = 1, ..., n.

azi2 = 0, i = 1, ..., n.

bzi1 =

λz1
2 i = 1

λzi2 + zi−1
2 i = 2, ..., n.

bzi2 = 0, i = 1, ..., n.

Therefore the indecomposable pure-injective Λ-modules are as follows:

(i) Finite string modules

(a) M(∅) ∼= k,

(b) M(n(b−1a)), n ∈ N,

(c) M(n(ab−1)), n ∈ N,

(d) M(n(b−1a)b−1), n ∈ Z≥0,

(e) M(n(ab−1)a), n ∈ Z≥0.
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(ii) Infinite string modules

(a) M(∞(b−1a)),

(b) M(∞(a−1b)),

(c) N(∞(ba−1)),

(d) N(∞(ab−1)),

(iii) Band modules

(a) B(ab−1, λ, n), λ ∈ k×, n ∈ N,

(b) B(ab−1, λ,−∞), λ ∈ k× (adic),

(c) B(ab−1, λ,∞), λ ∈ k× (Prüfer),

(d) B(ab−1, G) where G = k(T ) is the ring of rational functions as a module

(generic).

It remains to note that the indecomposable pure-injectives of kV4-Mod corre-

spond to the indecomposable pure-injectives of Λ-Mod by [35, Proposition 1.16]

and Proposition 2.6.20.



Chapter 3

A monoidal analogue of the

2-category anti-equivalence

between ABEX and DEF

The content of this chapter is from [59].

3.1 The 2-categories ABEX⊗ and DEF⊗

In this section we define the 2-categories ABEX⊗ and DEF⊗.

Definition 3.1.1. We will say that a functor F : A → B between monoidal

categories (A ,⊗, 1A ) and (B,⊗′, 1B) is monoidal if there exists an isomorphism

in B, ε : 1B → F (1A ) and a natural isomorphism µ : (⊗′ ◦ F × F ) → (F ◦ ⊗)

satisfying the associativity condition µX⊗Y,Z ◦ (µX,Y ⊗′F (Z)) = µX,Y⊗Z ◦ (F (X)⊗′

µY,Z) and the unitality conditions, µ1A ,X ◦ (ε ⊗′ F (X)) = idF (X) and µX,1A
◦

(F (X)⊗′ ε) = idF (X).

Definition 3.1.2. Let ABEX⊗ denote the 2-category with objects given by skele-

tally small abelian categories equipped with an additive symmetric monoidal struc-

ture which is exact in each variable, 1-morphisms given by additive exact monoidal

functors and 2-morphisms given by (not necessarily monoidal) natural transforma-

tions.

55
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Notation 3.1.3. Given a category C and morphisms f : A → B and k : A → C

in C , we will write f |k if there exists some morphism k′ : B → C in C such that

k = k′ ◦ f .

Definition 3.1.4. Let C be a finitely accessible category with products and an

additive symmetric closed monoidal structure such that Cfp is a monoidal subcat-

egory. We say that a definable subcategory D ⊆ C is fp-hom-closed if for every

A ∈ Cfp and X ∈ D, hom(A,X) ∈ D, where hom denotes the internal hom-functor.

We say that a definable subcategory D ⊆ C satisfies the exactness criterion if

given morphisms f : A→ B and g : U → V in Cfp and a morphism h : A⊗U → X

in C where X ∈ D, if (f ⊗U)|h and (A⊗ g)|h then (f ⊗ g)|h (see Notation 3.1.3).

Definition 3.1.5. We define the 2-category DEF⊗ as follows. Let the objects of

DEF⊗ be given by the triples (D, C,⊗) where C is a finitely accessible category with

products, ⊗ is an additive symmetric closed monoidal structure on C such that

Cfp is a monoidal subcategory and D is an fp-hom-closed definable subcategory of

C satisfying the exactness criterion. Let the 1-morphisms in DEF⊗ be given by

the additive functors I : D → D′ which commute with direct products and direct

limits and such that the induced functor I0 : fun(D′)→ fun(D) (given by mapping

F : D′ → Ab to F ◦ I : D → Ab (see [51, Theorem 2.3])) is monoidal. The

2-morphisms are given by (not necessarily monoidal) natural transformations.

Remark 3.1.6. Notice that there exist forgetful 2-functors F : ABEX⊗ → ABEX
and F : DEF⊗ → DEF which forget the monoidal structure.

3.2 The 2-category anti-equivalence

Theorem 3.2.1. There exists a 2-category anti-equivalence between ABEX⊗ and

DEF⊗ given on objects by A 7→ (Ex(A ,Ab),A -Mod,⊗) where the monoidal

structure, ⊗, on A -Mod is induced by the monoidal structure on A via Day

convolution product. Conversely, the anti-equivalence maps an object (D, C,⊗) in

DEF⊗ to the skeletally small abelian category fun(D) = (D,Ab)Π→ with monoidal

structure induced by Day convolution product on Cfp-mod (see Definition 3.3.9).

We prove Theorem 3.2.1 in several parts.
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3.3 The 2-functor θ : (DEF⊗)op → ABEX⊗

First let us define a 2-functor θ : (DEF⊗)op → ABEX⊗. On objects, θ maps

(D, C,⊗) in DEF⊗ to fun(D). In Theorem 3.3.6 we show that the Serre subcategory

of Cfp-mod corresponding to D is a Serre tensor-ideal. We use this in Definition

3.3.9 to define an additive symmetric monoidal structure on fun(D). We then show

that the monoidal structure is exact in each variable in Proposition 3.3.10.

Assumption 3.3.1. Let C be an additive finitely accessible category with products.

Suppose further that C has an additive closed symmetric monoidal structure such

that Cfp is a monoidal subcategory. Induce a monoidal structure on Cfp-Mod via

Day convolution product and note that this restricts to a monoidal structure on

Cfp-mod. We denote all tensor products by ⊗. Note that the monoidal structures

on C and Cfp-Mod are assumed to be closed, and therefore in both cases the

tensor product functor, ⊗, is right exact in each variable. Furthermore, as C is

an additive finitely accessible category with products, Cfp-Mod is locally coherent

[49, Theorem 6.1] and therefore Cfp-mod is an abelian subcategory of Cfp-Mod (e.g.

see [48, Theorem E.1.47]). Therefore, every exact sequence in Cfp-mod is exact in

Cfp-Mod and consequently the restriction of Day convolution product to Cfp-mod

is also right exact in each variable.

Remark 3.3.2. Given a finitely accessible category C satisfying all the properties

in Assumption 3.3.1, we can use the equivalence between the category L(C)eq+

of pp-pairs in the canonical language for C and Cfp-mod (see Theorem 2.4.32) to

define a monoidal structure on L(C)eq+. Thus we can define a tensor product of

pp-pairs. For example, for A,B ∈ Cfp, the pp-pairs (xA = xA)/(xA = 0) and

(xB = xB)/(xB = 0) correspond to the representable functors (A,−) and (B,−)

respectively. Therefore (xA = xA)/(xA = 0) ⊗ (xB = xB)/(xB = 0) = (xA⊗B =

xA⊗B)/(xA⊗B = 0).

Before we prove the correspondence between fp-hom-closed definable subcate-

gories and Serre tensor-ideals (Theorem 3.3.6), we prove some useful lemmas. The

first uses the tensor-hom adjunction of a closed monoidal category to find a natural

isomorphism between two functors. Notice that if, for every X ∈ Cfp, the internal

hom-functor hom(X,−), restricts to a functor hom(X,−) : Cfp → Cfp, that is Cfp
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forms a closed monoidal subcategory of C, then the statement and proof of the

following lemma both simplify.

Lemma 3.3.3. Let C be as in Assumption 3.3.1 and induce a monoidal structure

on Cfp-Mod via Day convolution product. Then for all F ∈ Cfp-Mod and X ∈ Cfp,

(X,−)⊗F is naturally isomorphic to
−→
F ◦hom(X,−)|Cfp where hom(X,−) : C → C

denotes the internal hom-functor and hom(X,−)|Cfp : Cfp → C is the restriction to

finitely presented objects.

Proof. First suppose F is finitely presentable with presentation (B,−)
(f,−)−−−→

(A,−)
πf−→ F → 0, with f : A→ B in Cfp and suppose X ∈ Cfp. Then (X,−)⊗ F

has presentation

(X ⊗B,−)
(X⊗f,−)−−−−−→ (X ⊗ A,−)

πX⊗f−−−→ (X,−)⊗ F → 0,

where X ⊗ f : X ⊗ A → X ⊗ B is in Cfp. For any Z ∈ Cfp we have the following

diagram in Ab.

(X ⊗B,Z) (X ⊗ A,Z) ((X,−)⊗ F )(Z) 0

(B, hom(X,Z)) (A, hom(X,Z)) (
−→
F ◦ hom(X,−)|Cfp)(Z) 0

(X ⊗ f,−)Z (πX⊗f )Z

(f, hom(X,−))Z (πf )hom(X,Z)

αB αA ηZ

Since the isomorphisms αB and αA are natural in A and B respectively, the ηZ

form the components of a natural isomorphism η : (X,−)⊗F →
−→
F ◦hom(X,−)|Cfp .

If F : Cfp → Ab is any additive functor then F = lim−→i∈IFi for some finitely pre-

sented functors Fi. For each i ∈ I, we have ηi : ((X,−)⊗Fi)→
−→
Fi ◦hom(X,−)|Cfp ,

defined as above. Furthermore, for any natural transformation λ : Fi → Fj the

following diagram commutes, where
−→
λ :
−→
Fi →

−→
Fj denotes the natural transforma-

tion with components given by the unique map between direct limits induced by

λ.
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(X,−)⊗ Fi
−→
Fi ◦ hom(X,−)|Cfp

(X,−)⊗ Fj
−→
Fj ◦ hom(X,−)|Cfp

ηi

ηj

(X,−)⊗ λ
−→
λ hom(X,−)|Cfp

Therefore, by the universal property of direct limits, the ηi for i ∈ I induce a

unique natural isomorphism

lim−→i∈I((X,−)⊗ Fi)→ lim−→i∈I(
−→
Fi ◦ hom(X,−)|Cfp) =

−→
F ◦ hom(X,−)|Cfp .

Since (X,−)⊗− commutes with direct limits,

lim−→i∈I((X,−)⊗ Fi) ∼= (X,−)⊗ lim−→i∈IFi = (X,−)⊗ F.

Therefore, we have a natural isomorphism η : (X,−)⊗F →
−→
F ◦ hom(X,−)|Cfp as

required. �

Lemma 3.3.4. Let C be as in Assumption 3.3.1. For every C ∈ Cfp,

hom(C,−) : C → C

commutes with direct limits.

Proof. As hom(C,−) : C → C is right adjoint to C ⊗ − : C → C and by

assumption C ⊗ − restricts to finitely presented objects, we can apply the proof

of [1, Proposition 2.23] to deduce that hom(C,−) : C → C commutes with direct

limits. �

Next, we simplify the criteria for a Serre subcategory of Cfp-mod to be a Serre

tensor-ideal.

Lemma 3.3.5. Let C be as in Assumption 3.3.1 and suppose S is a Serre subcat-

egory of Cfp-mod. Then S is a Serre tensor-ideal of Cfp-mod if and only if for all
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C ∈ Cfp and all F ∈ S,

(C,−)⊗ F ∈ S.

Proof. ( =⇒ ) Holds by the definition of tensor-ideal.

( ⇐= ) Suppose that for all C ∈ Cfp and all F ∈ S, (C,−) ⊗ F ∈ S. Let Ff ∈ S

and Fg ∈ Cfp-mod where Fg has projective resolution

(V,−)
(g,−)−−−→ (U,−)→ Fg → 0,

for g : U → V a morphism in Cfp.

By right exactness of the induced tensor product, we have the exact sequence

(V,−)⊗ Ff → (U,−)⊗ Ff → Fg ⊗ Ff → 0.

By assumption, (U,−) ⊗ Ff is an object of S. Therefore Fg ⊗ Ff ∈ S as S is

Serre. Hence S is a tensor-ideal as required. �

Now we are ready to prove the following theorem.

Theorem 3.3.6. Let C be an additive finitely accessible category with products.

Suppose further that C has an additive closed symmetric monoidal structure such

that Cfp is a monoidal subcategory.

Let D be a definable subcategory of C and S ⊆ Cfp-mod be the corresponding

Serre subcategory as in Theorem 2.4.33. Then S is a tensor-ideal of Cfp-mod if

and only if D is fp-hom-closed.

Proof. Recall that the functors in S are exactly those whose unique extension

along direct limits annihilates D. Therefore D is fp-hom-closed if and only if for

every A ∈ Cfp, X ∈ D and every F ∈ S,
−→
F (hom(A,X)) = 0. By Lemma 3.3.4 and

definition of
−→
(−),

−→
F ◦ hom(A,−) commutes with direct limits and therefore

−→
F ◦ hom(A,−) =

−−−−−−−−−−−−−→−→
F ◦ hom(A,−)|Cfp .

Furthermore, by Lemma 3.3.3, we have

(A,−)⊗ F ∼=
−→
F ◦ hom(A,−)|Cfp : Cfp → Ab,
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so
−→
F ◦ hom(A,−) ∼=

−−−−−−−→
(A,−)⊗ F .

Therefore, D is fp-hom-closed if and only if for every A ∈ Cfp, X ∈ D and

F ∈ S,
−−−−−−−→
(A,−)⊗ F (X) = 0, equivalently (A,−)⊗ F ∈ S.

Finally note that S is a Serre tensor-ideal if and only if it is closed under

tensoring with representable functors (see Lemma 3.3.5). �

Remark 3.3.7. Let C be a monoidal finitely accessible category with products as in

Assumption 3.3.1. By Theorem 3.3.6 and Theorem 2.4.32, a definable subcategory

D ⊆ C is fp-hom-closed if and only if the collection of pp-pairs φ/ψ such that

φ(X)/ψ(X) = 0 for all X ∈ D, forms a Serre tensor-ideal in the category L(C)eq+

with the monoidal structure as discussed in Remark 3.3.2. By Lemma 3.3.5, a Serre

subcategory of L(C)eq+ is a tensor-ideal if and only if it is closed under tensoring

with pp-pairs of the form (xC = xC)/(xC = 0) for all C ∈ Cfp. The equivalence in

Theorem 2.4.32 sends a function Ff ∈ Cfp-mod with presentation

(B,−)
(f,−)−−−→ (A,−)→ Ff → 0,

where f : A→ B is a morphism in Cfp, to the pp-pair (xA = xA)/(∃yB xA = yB◦f).

Thus for C ∈ Cfp,

(xC = xC)/(xC = 0) ⊗ (xA = xA)/(∃yB xA = yBf)

= (xC⊗A = xC⊗A)/(∃yC⊗B xC⊗A = yC⊗B(C ⊗ f)).

By Theorem 3.3.6, if (D, C,⊗) is an object of DEF⊗, then the corresponding

Serre subcategory of Cfp-mod is a Serre tensor-ideal. Next we use this to define a

monoidal structure on fun(D). We prove the following lemma first.

Lemma 3.3.8. Let C be as in Assumption 3.3.1. Then

(C,−)⊗− : Cfp-Mod→ Cfp-Mod

is exact for all C ∈ Cfp. If we assume further that C ∈ Cfp is rigid then so is

(C,−) with dual given by (C∨,−).
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Proof. We already know that (C,−) ⊗ − is a left adjoint [20, Theorem 3.3 and

Theorem 3.6] and therefore right exact. We show that (C,−) ⊗ − is also a right

adjoint and therefore is an exact functor.

We first define the left adjoint LC : Cfp-Mod → Cfp-Mod on finitely presented

functors. Given Ff ∈ Cfp-mod with presentation (B,−)
(f,−)−−−→ (A,−) → Ff → 0,

denote by LC(Ff ) the functor with presentation

(hom(C,B),−)
(hom(C,f),−)−−−−−−−→ (hom(C,A),−)→ LC(Ff )→ 0.

It can be checked that this definition does not depend on the choice of f .

Now, given another finitely presented functor Fg with presentation (V,−)
(g,−)−−−→

(U,−) → Fg → 0 and a morphism α : Ff → Fg, chose any α1 : U → A and

α2 : V → B such that the following diagram commutes.

0 0

Ff Fg

(A,−) (U,−)

(B,−) (V,−)

α

(α1,−)

(α2,−)

πf πg

(f,−) (g,−)

Then define the morphism LC(α) : LC(Ff ) → LC(Fg) by the unique map

making the following diagram commute.
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0 0

LC(Ff ) LC(Fg)

(hom(C,A),−) (hom(C,U),−)

(hom(C,B),−) (hom(C, V ),−)

LC(α)

(hom(C, α1),−)

(hom(C, α2),−)

πhom(C,f) πhom(C,g)

(hom(C, f),−) (hom(C, g),−)

Note that this does not depend of the choice of α1 and α2. To define LC (up

to isomorphism) on any F ∈ Cfp-Mod, we assert that LC commutes with direct

limits.

It is easy to check that LC : Cfp-Mod → Cfp-Mod defines (up to isomorphism)

a functor, indeed this follows from the fact that hom(C,−) : C → C is a functor.

We claim that this functor is left adjoint to (C,−)⊗− : Cfp-Mod→ Cfp-Mod.

As (C,−)⊗− and LC commute with direct limits, it is enough to define the unit

and counit of the adjunction on finitely presented functors. Indeed, any functor

F ∈ Cfp-Mod can be expressed as a direct limit of finitely presented functors,

say F = lim−→i∈IFi where each Fi ∈ Cfp-mod. By the universal property of direct

limits, the value of the unit, ηF : F → ((C,−) ⊗ LC(F ), and the counit, εF :

LC((C,−)⊗ F )→ F , at F , is uniquely determined by the respective components

at the Fi.

The unit, η : IdCfp-Mod → ((C,−) ⊗ −) ◦ LC , is defined on finitely presented

functors as follows. For Ff ∈ Cfp-mod we define ηFf : Ff → (C,−) ⊗ LC(Ff ) as

the unique map such that the following diagram commutes, where εC : (C ⊗−) ◦
hom(C,−)→ IdC is the counit of the adjunction between C ⊗− and hom(C,−).
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0 0

Ff (C,−)⊗ LC(Ff )

(A,−) (C ⊗ hom(C,A),−)

(B,−) (C ⊗ hom(C,B),−)

ηFf

((εC)A,−)

((εC)B,−)

πf (C,−)⊗ πhom(C,f)

(f,−) (C ⊗ hom(C, f),−)

Similarly we define the counit of the adjunction, ε : LC◦(C,−)⊗− → IdCfp-Mod,

as follows. For Ff ∈ Cfp-mod we define εFf : LC((C,−))⊗Ff )→ Ff as the unique

map such that the following diagram commutes, where ηC : IdC → hom(C,−) ◦
(C ⊗−) is the unit of the adjunction between C ⊗− and hom(C,−).

0 0

LC((C,−)⊗ Ff ) Ff

(C ⊗ hom(C,A),−) (A,−)

(C ⊗ hom(C,B),−) (B,−)

εFf

((ηC)A,−)

((ηC)B,−)

πhom(C,C⊗f) πf

(hom(C,C ⊗ f),−) (f,−)

It can be seen that ηFf and εFf don’t depend of the choice of presentation. It

remains to check that the triangle identities hold. Again, it is enough to check
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when evaluating at finitely presented functors and these follow easily from the

triangle identities on the adjunction between C ⊗− and hom(C,−).

If, in addition, we assume that C ∈ Cfp is rigid then hom(C,−) ∼= C∨ ⊗− and

therefore LC
∼= (C∨,−)⊗−. Thus, (C∨,−)⊗− is left adjoint to (C,−)⊗− and

(C,−)⊗− ∼= ((C∨)∨,−)⊗− is left adjoint to (C∨,−)⊗−. Therefore, (C,−)⊗−
is rigid with dual given by (C∨,−)⊗− as required. �

Next we define an additive symmetric monoidal structure on fun(D).

Definition 3.3.9. Suppose (D, C,⊗) ∈ DEF⊗ and let S ⊆ Cfp-mod be the Serre

subcategory corresponding to D. By Theorem 3.3.6, S is a Serre tensor-ideal of

Cfp-mod. First we define an additive symmetric monoidal structure on Cfp-mod/S.

By [21], if the multiplicative system ΣS of all the morphisms α in Cfp-mod

such that ker(α), coker(α) ∈ S is closed under tensoring with objects of Cfp-mod,

then Cfp-mod/S has a monoidal structure such that the localisation functor q :

Cfp-mod→ fun(D) = Cfp-mod/S is universal among monoidal functors which map

the morphisms in ΣS to isomorphisms.

By Lemma 3.3.8, for any C ∈ Cfp, (C,−) ⊗ − : Cfp-Mod → Cfp-Mod is exact.

Since, Cfp-mod is an abelian subcategory of Cfp-Mod, (C,−) ⊗ − : Cfp-mod →
Cfp-mod is also exact. Consequently, for every α : F → G in Cfp-mod, ker((C,−)⊗
α) ∼= (C,−) ⊗ ker(α) and coker((C,−) ⊗ α) ∼= (C,−) ⊗ coker(α). Therefore if S

is a tensor-ideal and α ∈ ΣS then ker((C,−) ⊗ α), coker((C,−) ⊗ α) ∈ S so

(C,−)⊗ α ∈ ΣS.

Now consider the morphism Fg ⊗ α. We have the following commutative dia-

gram with exact rows.

(V,−)⊗ F (U,−)⊗ F Fg ⊗ F 0

(V,−)⊗G (U,−)⊗G Fg ⊗G 0

(g,−)⊗ F

(g,−)⊗G

(V,−)⊗ α (U,−)⊗ α Fg ⊗ α

Since for every D ∈ D, ((V,−)⊗ α)D and ((U,−)⊗ α)D are isomorphisms, so

is (Fg ⊗ α)D. Hence ker(Fg ⊗ α), coker(Fg ⊗ α) ∈ S and Fg ⊗ α ∈ ΣS.
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Applying [21, Corollary 1.4] we get an additive symmetric monoidal structure

on Cfp-mod/S. We induce a monoidal structure on fun(D) = (D,Ab)Π→ via the

equivalence given in Theorem 2.4.37.

Next we show that, if D satisfies the exactness criterion, the monoidal structure

on fun(D) is exact in each variable.

Proposition 3.3.10. Let C be as in Assumption 3.3.1. Suppose D is an fp-

hom-closed definable subcategory and induce a monoidal structure on fun(D) as in

Definition 3.3.9.

If D satisfies the exactness criterion then the monoidal structure on fun(D) is

exact in each variable.

Proof. Suppose D satisfies the exactness criterion, i.e. for any f : A → B and

g : U → V in Cfp and for any D ∈ D, if h : A ⊗ U → D satisfies (f ⊗ U)|h and

(A ⊗ g)|h then (f ⊗ g)|h. Suppose further that 0 → F → G → L → 0 is an

exact sequence in fun(D). It is (isomorphic to) the image of an exact sequence

0 → Ff
α−→ Fg

β−→ Fl → 0 in Cfp-mod (see [48, Lemma 11.1.6 and Corollary

11.1.42]). If K ∈ fun(D) then K is isomorphic to the image of Fk for some

Fk ∈ Cfp-mod. Therefore, since the localisation functor is monoidal, showing that

0→ K ⊗ F K⊗α−−−→ K ⊗G K⊗β−−−→ K ⊗ L→ 0 is a short exact sequence in fun(D) is

equivalent to showing that the image of the (not necessarily exact) sequence

0→ Fk ⊗ Ff → Fk ⊗ Fg → Fk ⊗ Fl → 0

under the localisation functor gives a short exact sequence. By [49, Theorem

12.10], this is equivalent to showing that

0→ (
−−−−−→
Fk ⊗ Ff )(D)→ (

−−−−−→
Fk ⊗ Fg)(D)→ (

−−−−→
Fk ⊗ Fl)(D)→ 0

is exact for all D ∈ D.

Suppose Fk has presentation (T,−)
(k,−)−−−→ (S,−) → Fk → 0, where k : S → T

is a morphism in Cfp, then we have the following commutative diagram in Cfp-mod.
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0 0 0

Fk ⊗ Ff Fk ⊗ Fg Fk ⊗ Fl 0

0 (S,−)⊗ Ff (S,−)⊗ Fg (S,−)⊗ Fl 0

0 (T,−)⊗ Ff (T,−)⊗ Fg (T,−)⊗ Fl 0

Fk ⊗ α Fk ⊗ β

πk ⊗ Ff
(S,−)⊗ α (S,−)⊗ β

(k,−)⊗ Ff (k,−)⊗ Fg (k,−)⊗ Fl

(T,−)⊗ α (T,−)⊗ β

Here the second row is exact since Fk ⊗− is a left adjoint and therefore right

exact. The third and fourth rows are exact by Lemma 3.3.8. We must show that
−−−−−→
(Fk ⊗ α)D is a monomorphism (or has zero kernel) for all D ∈ D. Fix D ∈ D. To

enhance readability, for a functor F ∈ Cfp-mod we will suppress the usual notation,
−→
F , for the unique extension to a functor C → Ab which commutes with direct

limits, and simply use F . By Yoneda’s lemma, (Fk ⊗ α)D is a monomorphism if

and only if, for every morphism β : (D,−) → Fk ⊗ Ff , if (Fk ⊗ α) ◦ β = 0 then

β = 0. Suppose β : (D,−)→ Fk ⊗ Ff satisfies (Fk ⊗ α) ◦ β = 0.

Let us fix some notation. Say that Ff has presentation (B,−)
(f,−)−−−→ (A,−)

πf−→
Ff → 0 and Fg has presentation (V,−)

(g,−)−−−→ (U,−)
πg−→ Fg → 0. Choose any mor-

phisms α1 : U → A and α2 : V → B such that the following diagram commutes.

(B,−) (A,−) Ff 0

(V,−) (U,−) Fg 0

(f,−)

(g,−)

πf

πg

α(α1,−)(α2,−)

The proof will proceed in the following steps.
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Step 1: We will show that β = (πk ⊗ πf ) ◦ (γ1,−) where γ1 : S ⊗A→ D and

there exists l′ : S ⊗ V → D and ξ1 : T ⊗ U → D such that

γ1 ◦ (S ⊗ α1)− l′ ◦ (S ⊗ g) = ξ1 ◦ (k ⊗ U).

Step 2: We will use the exactness criterion to conclude that

γ1 ◦ (S ⊗ α1)− l′ ◦ (S ⊗ g) = y1 ◦ (k ⊗ g) + y2 ◦ (k ⊗ α1),

where y1 : T ⊗ V → D and y2 : T ⊗ A→ D.

Step 3: We show that

((S,−)⊗α)◦ ((S,−)⊗πf )◦ (γ1,−) = ((S,−)⊗α)◦ ((S,−)⊗πf )◦ (y2 ◦ (k⊗A),−)

and use that ((S,−)⊗ α) is a monomorphism to conclude that

((S,−)⊗ πf ) ◦ (γ1,−) = ((S,−)⊗ πf ) ◦ (y2 ◦ (k ⊗ A),−).

Step 4: We compose both sides of

((S,−)⊗ πf ) ◦ (γ1,−) = ((S,−)⊗ πf ) ◦ (k ⊗ A,−) ◦ (y2,−)

by πk ⊗ Ff to get β = 0.

Step 1: Since πk⊗Ff is an epimorphism and (D,−) is projective, there exists

some γ : (D,−)→ (S,−)⊗ Ff such that β = (πk ⊗ Ff ) ◦ γ.

Since 0 = (Fk ⊗ α) ◦ β = (Fk ⊗ α) ◦ (πk ⊗Ff ) ◦ γ = (πk ⊗Fg) ◦ ((S,−)⊗ α) ◦ γ
and (D,−) is projective, ζ := ((S,−) ⊗ α) ◦ γ : (D,−) → (S,−) ⊗ Fg factors via

(k,−) ⊗ Fg, say ζ = ((k,−) ⊗ Fg) ◦ ξ, where ξ : (D,−) → (T,−) ⊗ Fg (see the

diagram below).
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(T ⊗ V,−)

(T ⊗ U,−) (D,−)

(T,−)⊗ Fg (S,−)⊗ Fg Fk ⊗ Fg 0

0

(T ⊗ g,−)

(ξ1,−)

ζ

(k,−)⊗ Fg πk ⊗ Fg

0ξ

As (D,−) is projective, ξ factors via (T,−)⊗πg, say ξ = ((T,−)⊗πg)◦ (ξ1,−)

where ξ1 : T ⊗U → D. Similarly, γ : (D,−)→ (S,−)⊗Ff factors via (S,−)⊗πf ,
say γ = ((S,−)⊗πf )◦(γ1,−) where γ1 : S⊗A→ D. Therefore, as ((S,−)⊗α)◦γ =

ζ = ((k,−)⊗ Fg) ◦ ξ we have

((S,−)⊗ πg) ◦ (S ⊗ α1,−) ◦ (γ1,−) = ((S,−)⊗ πg) ◦ (k ⊗ U,−) ◦ (ξ1,−).

Set l = γ1 ◦ (S ⊗ α1)− ξ1 ◦ (k ⊗ U) : S ⊗ U → D. Then

((S,−)⊗ πg) ◦ (l,−) = 0,

meaning (l,−) factors via (S ⊗ g,−), i.e. l = l′ ◦ (S ⊗ g) for some l′ : S ⊗ V → D.

We have shown that

l = γ1 ◦ (S ⊗ α1)− ξ1 ◦ (k ⊗ U) = l′ ◦ (S ⊗ g).

Rearranging we have

γ1 ◦ (S ⊗ α1)− l′ ◦ (S ⊗ g) = ξ1 ◦ (k ⊗ U).
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Step 2: Now we can use the exactness criterion. Set h := γ1 ◦ (S ⊗ α1) −
l′ ◦ (S ⊗ g) = ξ1 ◦ (k ⊗ U). Consider the morphism (g, α1) : U → V ⊕ A such

that p1 ◦ (g, α1) = g and p2 ◦ (g, α1) = α1, where p1 and p2 denote the projection

maps. Then (S ⊗ (g, α1))|h and (k ⊗ U)|h so since the exactness criterion holds

for D, (k ⊗ (g, α1))|h and there exists some y : T ⊗ (V ⊕ A) → D such that

y◦(k⊗(g, α1)) = h. Set y1 = y◦(T⊗i1) and y2 = y◦(T⊗i2), where i1 : V → V ⊕A
and i2 : A→ V ⊕ A are the inclusion maps. Then we have

γ1 ◦ (S ⊗ α1)− l′ ◦ (S ⊗ g) = h = y1 ◦ (k ⊗ g) + y2 ◦ (k ⊗ α1).

Step 3: Composing (h,−) with (S,−)⊗ πg we get,

((S,−)⊗ πg) ◦ (γ1 ◦ (S ⊗ α1),−) = ((S,−)⊗ πg) ◦ (h,−)

= ((S,−)⊗ πg) ◦ (y2 ◦ (k ⊗ α1),−).

(S ⊗B,−) (S ⊗ A,−) (S,−)⊗ Ff 0

(S ⊗ V,−) (S ⊗ U,−) (S,−)⊗ Fg 0

(S ⊗ f,−)

(S ⊗ g,−)

(S,−)⊗ πf

(S,−)⊗ πg

(S,−)⊗ α(S ⊗ α1,−)(S ⊗ α2,−)

As shown on the commutative diagram above, we have

((S,−)⊗ πg) ◦ ((S,−)⊗ (α1,−)) = ((S,−)⊗ α) ◦ ((S,−)⊗ πf ).

Therefore, as

((S,−)⊗ πg) ◦ (γ1 ◦ (S ⊗ α1),−) = ((S,−)⊗ πg) ◦ (y2 ◦ (k ⊗ α1),−)

we have

((S,−)⊗α)◦ ((S,−)⊗πf )◦ (γ1,−) = ((S,−)⊗α)◦ ((S,−)⊗πf )◦ (y2 ◦ (k⊗A),−).
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Since (S,−)⊗ α is a monomorphism we have

((S,−)⊗ πf ) ◦ (γ1,−) = ((S,−)⊗ πf ) ◦ (y2 ◦ (k ⊗ A),−).

Step 4: Finally note that

((S,−)⊗ πf ) ◦ (y2 ◦ (k ⊗ A),−) = ((k,−)⊗ Ff ) ◦ ((T,−)⊗ πf ) ◦ (y2,−)

and therefore, as

γ = ((S,−)⊗ πf ) ◦ (γ1,−) = ((k,−)⊗ Ff ) ◦ ((T,−)⊗ πf ) ◦ (y2,−)

we get that

β = (πk ⊗ Ff ) ◦ γ = (πk ⊗ Ff ) ◦ ((k,−)⊗ Ff ) ◦ ((T,−)⊗ πf ) ◦ (y2,−) = 0,

as required. �

In fact, the converse of Proposition 3.3.10 is also true.

Proposition 3.3.11. Let C be as in Assumption 3.3.1. Suppose D is an fp-

hom-closed definable subcategory and induce a monoidal structure on fun(D) as

in Definition 3.3.9. If the monoidal structure on fun(D) is exact in each variable

then D satisfies the exactness criterion.

Proof. Suppose that the induced monoidal structure on fun(D) is exact in each

variable. Suppose f : A → B and g : U → V are morphisms in Cfp. By [49,

Corollary 3.11], Cfp has weak cokernels. Let g′ : V → W be a weak cokernel of g.

Then (W,−)
(g′,−)−−−→ (V,−)

(g,−)−−−→ (U,−) is exact in Cfp-mod, that is im((g′,−)) =

ker((g,−)). Therefore, its image (W,−)S
(g′,−)S−−−−→ (V,−)S

(g,−)S−−−→ (U,−)S is exact in

fun(D) and by assumption, (Ff )S⊗(W,−)S
(Ff )S⊗(g′,−)S−−−−−−−−→ (Ff )S⊗(V,−)S

(Ff )S⊗(g,−)S−−−−−−−→
(Ff )S ⊗ (U,−)S is also exact in fun(D). As the localisation functor is monoidal,

this is equivalent to, (Ff ⊗ (W,−))(D)
(Ff⊗g′,−))D−−−−−−−→ (Ff ⊗ (V,−))(D)

(Ff⊗(g,−))D−−−−−−−→
(Ff⊗(U,−))(D) being exact in Ab for allD ∈ D, by [49, Theorem 12.10]. Consider

the diagram below.
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0 0 0

Ff ⊗ (W,−) Ff ⊗ (V,−) Ff ⊗ (U,−)

(A⊗W,−) (A⊗ V,−) (A⊗ U,−)

(B ⊗W,−) (B ⊗ V,−) (B ⊗ U,−)

Ff ⊗ (g′,−) Ff ⊗ (g,−)

πf ⊗ (W,−) πf ⊗ (V,−) πf ⊗ (U,−)

(A⊗ g′,−) (A⊗ g,−)

(f ⊗W,−) (f ⊗ V,−) (f ⊗ U,−)

(B ⊗ g′,−) (B ⊗ g,−)

Given any h : A ⊗ U → D such that (f ⊗ U)|h and (A ⊗ g)|h there exists

h1 : B ⊗ U → D such that h = h1 ◦ (f ⊗ U) and h2 : A ⊗ V → D such that

h = h2 ◦ (A⊗ g). But this means that

((Ff ⊗ (g,−)) ◦ (πf ⊗ (V,−)))D(h2) = (πf ⊗ (U,−))D(h2 ◦ (A⊗ g))

= (πf ⊗ (U,−))D(h1 ◦ (f ⊗ U))

= 0.

So (πf ⊗ (V,−))D(h2) is in the kernel of (Ff ⊗ (g,−))D which is equal to the

image of (Ff ⊗ (g′,−))D. Therefore there exists some z ∈ (Ff ⊗ (W,−))(D) such

that (Ff ⊗ (g′,−))D(z) = (πf ⊗ (V,−))D(h2). But then, since (πf ⊗ (W,−))D is

an epimorphism in Ab, there exists some morphism z′ : A ⊗W → D such that

(πf ⊗ (W,−))D(z′) = z.

Next, notice that (πf ⊗ (V,−))D(h2 − (z′ ◦ (A ⊗ g′))) = 0. So there exists

some y : B ⊗ V → D such that y ◦ (f ⊗ V ) = h2 − (z′ ◦ (A ⊗ g′)). But then

y ◦ (f⊗g) = y ◦ (f⊗V )◦ (A⊗g) = h2 ◦ (A⊗g) = h. That is (f⊗g)|h, as required.

�
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Theorem 3.3.12. There exists a 2-functor θ : (DEF⊗)op → ABEX⊗ which maps

(D, C,⊗) ∈ DEF⊗ to fun(D) = (D,Ab)Π→ ∈ ABEX⊗. The exact additive sym-

metric monoidal structure on fun(D) = (D,Ab)Π→ is given by inducing Day con-

volution product on Cfp-mod, establishing a monoidal structure on the localisation

Cfp-mod/S such that the quotient functor q : Cfp-mod → Cfp-mod/S is monoidal

and asserting that the equivalence Cfp-mod/S ' (D,Ab)Π→ is monoidal (Defini-

tion 3.3.9).

On 1-morphisms θ maps I : D → D′ in DEF⊗ to the 1-morphism

I0 : (D′,Ab)Π→ → (D,Ab)Π→ in ABEX⊗ where I0 maps a functor F : D′ → Ab

to F ◦ I : D → Ab.

Given a 2-morphisms τ : I → J in DEF⊗, θ(τ) : I0 → J0 is the natural trans-

formation where the component at F ∈ (D′,Ab)Π→ is the natural transformation

θ(τ)F : I0(F )→ J0(F )

with component at X ∈ D given by

F (I(X))
F (τX)−−−→ F (J(X)),

noting that I0(F )(X) = (F ◦ I)(X) = F (I(X)).

Proof. θ is well defined on objects by Theorem 3.3.6 and Proposition 3.3.10.

Given a morphism I : D → D′ in DEF⊗, I0 is monoidal by definition of the

morphisms in DEF⊗ and therefore I0 is a 1-morphism in ABEX⊗. On natural

transformations θ acts as in the original anti-equivalence and therefore θ satisfies

the necessary axioms to be a 2-functor. �

3.4 The 2-functor ξ : (ABEX⊗)op → DEF⊗

Next we define a 2-functor ξ : (ABEX⊗)op → DEF⊗ which maps a skeletally

small abelian category A with an exact additive symmetric monoidal structure to

(Ex(A ,Ab),A -Mod,⊗), where ⊗ is induced by Day convolution product.
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First we show that (Ex(A ,Ab),A -Mod,⊗) is a well-defined object of DEF⊗

(see Theorem 3.4.2).

Lemma 3.4.1. Let A be an additive symmetric monoidal, skeletally small abelian

category. Suppose that for every exact functor E : A → Ab, every X ∈ A and

every short exact sequence 0→ A→ B → C → 0 in A ,

0→ E(X ⊗ A)→ E(X ⊗B)→ E(X ⊗ C)→ 0

is exact in Ab. Then the monoidal structure on A is exact in each variable.

Proof. By Freyd-Mitchell Embedding Theorem [25, Theorem 7.34] there exists a

ring R and an exact fully faithful functor F : A → R-Mod. Composing F with

the forgetful functor R-Mod→ Ab we get an exact faithful functor E : A → Ab.

For every short exact sequence 0→ A→ B → C → 0 in A ,

0→ E(X ⊗ A)→ E(X ⊗B)→ E(X ⊗ C)→ 0

is exact in Ab but as E is faithful, E reflects exactness, so

0→ X ⊗ A→ X ⊗B → X ⊗ C → 0

is exact in A as required. �

Theorem 3.4.2. Let A be an additive symmetric monoidal, skeletally small abelian

category. The following are equivalent:

(i) The definable subcategory Ex(A ,Ab) ⊆ A -Mod is fp-hom-closed (with re-

spect to Day convolution product).

(ii) The Serre subcategory SEx ⊆ (A -mod,Ab)fp of all functors F such that
−→
F (E) = 0 for all E ∈ Ex(A ,Ab) is a tensor-ideal of (A -mod,Ab)fp (with

respect to Day convolution product).

(iii) The tensor product on A is exact in each variable.
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Proof. (i) ↔ (ii): Follows directly from Theorem 3.3.6.

(iii) → (i): Suppose the monoidal structure on A is exact in each variable.

We first show that Ex(A ,Ab) is closed under hom(M,−) where M ∈ A -mod

is representable, say M = (X,−). Indeed, in this case, for all A ∈ A and E ∈
Ex(A ,Ab),

hom((X,−), E)(A) ∼= ((A,−), hom((X,−), E)) ∼= ((A⊗X,−), E) ∼= E(A⊗X),

by the Yoneda lemma and adjunction isomorphisms. What’s more, all these iso-

morphisms are natural in A. Therefore,

0→ hom((X,−), E)(A)→ hom((X,−), E)(B)→ hom((X,−), E)(C)→ 0

is exact if and only if

0→ E(A⊗X)→ E(B ⊗X)→ E(C ⊗X)→ 0

is exact. But the latter statement holds by our assumption on A , as E is an exact

functor. Therefore hom((X,−), E) is exact as required.

Now we generalise to Ff ∈ A -mod. We want to show that hom(Ff , E) : A →
Ab is an exact functor.

First note that (Ff ,−)|Ex(A ,Ab) commutes with direct products and direct

limits and therefore is an object of fun(Ex(A ,Ab)). By [51, Theorem 2.2],

there exists an equivalence A ' fun(Ex(A ,Ab)) given by A 7→ evA, where

evA : Ex(A ,Ab) → Ab maps an exact functor E to E(A). Therefore, there

exists some XF ∈ A such that (Ff ,−)|Ex(A ,Ab)
∼= evXF .

Suppose 0 → A → B → C → 0 is a short exact sequence in A . As E is an

exact functor and the monoidal structure on A is exact in each variable,

0→ E(A⊗XF )→ E(B ⊗XF )→ E(C ⊗XF )→ 0,
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is exact in Ab. As a result, by the Yoneda lemma,

0→ ((A⊗XF ,−), E)→ ((B ⊗XF ,−), E)→ ((C ⊗XF ,−), E)→ 0,

is exact in Ab and by the adjunction isomorphism this gives the exact sequence

0→ ((XF ,−), hom((A,−), E))→ ((XF ,−), hom((B,−), E))

→ ((XF ,−), hom((C,−), E))→ 0.

Applying the Yoneda lemma once more we have the exact sequence

0→ (hom((A,−), E))(XF )→ (hom((B,−), E))(XF )

→ (hom((C,−), E))(XF )→ 0,

which is isomorphic to

0→ (Ff , hom((A,−), E))→ (Ff , hom((B,−), E))→ (Ff , hom((C,−), E))→ 0,

as we have already seen that hom((A,−), E), hom((B,−), E) and hom((C,−), E)

are exact functors and (Ff ,−)|Ex(A ,Ab)
∼= evXF .

Again, by the Yoneda lemma and adjunction isomorphisms we have for every

A ∈ A ,

(Ff , hom((A,−), E)) ∼= (Ff⊗(A,−), E) ∼= ((A,−), hom(Ff , E)) ∼= hom(Ff , E)(A).

What’s more, all these isomorphisms are natural in A. Therefore

0→ hom(Ff , E)(A)→ hom(Ff , E)(B)→ hom(Ff , E)(C)→ 0,

is exact in Ab and hom(Ff , E) is an exact functor as required.

(i) → (iii) Suppose E ∈ Ex(A ,Ab) and X ∈ A . By (i) we have that

hom((X,−), E) is exact. Therefore, for all short exact sequences 0 → A → B →
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C → 0 in A ,

0→ hom((X,−), E)(A)→ hom((X,−), E)(B)→ hom((X,−), E)(C)→ 0,

is exact. But we have isomorphisms hom((X,−), E)(A) ∼= ((A,−), hom((X,−), E))
∼= ((X,−) ⊗ (A,−), E) = ((X ⊗ A,−), E) ∼= E(X ⊗ A) which are natural in A.

Therefore, 0→ E(X ⊗ A)→ E(X ⊗B)→ E(X ⊗ C)→ 0 is also exact.

So for any exact sequence, 0→ A→ B → C → 0 in A , 0→ X⊗A→ X⊗B →
X⊗C → 0 has exact image in Ab under any exact functor E : A → Ab. Lemma

3.4.1 completes the proof. �

Remark 3.4.3. Recall that the objects of the 2-category ABEX⊗ are skeletally small

abelian categories with additive symmetric monoidal structures which are exact

in each variable. However, in most examples (for instance A = R-mod for R a

commutative ring) the monoidal structure is only right exact. Theorem 3.4.2 shows

where the equivalence fails without the exactness assumption. Indeed, if we desire

the equivalence A ' fun(Ex(A ,Ab)) to be monoidal, the Serre subcategory SEx

must be a tensor-ideal, in order to induce a monoidal structure on fun(Ex(A ,Ab)).

Theorem 3.4.4. There exists a 2-functor ξ : (ABEX⊗)op → DEF⊗ given on

objects by A 7→ (Ex(A ,Ab),A -Mod,⊗) where the monoidal structure on A -Mod

is induced by Day convolution product.

ξ maps a 1-morphism E : A → A ′ in ABEX⊗ to the functor E∗ : Ex(A ′,Ab)→
Ex(A ,Ab) given by F 7→ F ◦ E.

Given a natural transformation τ : E → E ′ where E,E ′ : A → A ′ are 1-

morphisms in ABEX⊗, we define the natural transformation ξ(τ) : E∗ → E ′∗ to

have component at F ∈ Ex(A ′,Ab)

ξ(τ)F : E∗(F )→ E ′∗(F )

the natural transformation with component at A ∈ A given by

F (E(A))
F (τA)−−−→ F (E ′(A)).
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Proof. By Theorem 3.4.2, Ex(A ,Ab) is an fp-hom-closed definable subcategory

of A -Mod and SEx is a tensor-ideal of (A -mod,Ab)fp. Therefore we can define

a monoidal structure on fun(Ex(A ,Ab)) (as in Definition 3.3.9) such that the

localisation functor q : (A -mod,Ab)fp → (A -mod,Ab)fp/SEx ' fun(Ex(A ,Ab))

is a monoidal functor.

Note that the functor Y2 : A → (A -mod,Ab)fp given by A 7→ ((A,−),−)

is monoidal with respect to Day convolution product and the equivalence A '
fun(Ex(A ,Ab)) from [51, Theorem 2.2] can be taken to be q ◦ Y2. Therefore,

this equivalence is monoidal meaning the monoidal structure on fun(Ex(A ,Ab))

is exact. In turn this implies, by Proposition 3.3.10, that Ex(A ,Ab) satisfies the

exactness criterion. Therefore ξ is well defined on objects.

Next we need to show that, given a morphism E : A → B in ABEX⊗, E∗ :

Ex(B,Ab) → Ex(A ,Ab) given by F 7→ F ◦ E is a morphism in DEF⊗ that is

(E∗)0 : fun(Ex(A ,Ab))→ fun(Ex(B,Ab)) is monoidal.

By the original anti-equivalence in [51], we have the following commutative

diagram.

A fun(Ex(A ,Ab))

B fun(Ex(B,Ab))

∼=

E (E∗)0

∼=

We have shown above that the equivalence given by the horizontal maps is

monoidal. Therefore the inverse equivalence fun(Ex(A ,Ab))→ A is also monoidal

and (E∗)0 is naturally isomorphic to a monoidal functor, hence monoidal.

Finally, ξ acts on natural transformations in the same way as the original anti-

equivalence, (forgetting the monoidal structure) and therefore is a well-defined

2-functor. �
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3.5 Completing the proof of Theorem 3.2.1

Recall Theorem 3.2.1 below.

Theorem 3.2.1. There exists a 2-category anti-equivalence between ABEX⊗ and

DEF⊗ given on objects by A 7→ (Ex(A ,Ab),A -Mod,⊗) where the monoidal

structure, ⊗, on A -Mod is induced by the monoidal structure on A via Day

convolution product. Conversely, the anti-equivalence maps an object (D, C,⊗) in

DEF⊗ to the skeletally small abelian category fun(D) = (D,Ab)Π→ with monoidal

structure induced by Day convolution product on Cfp-mod (see Definition 3.3.9).

It remains to prove that the 2-functors θ : (DEF⊗)op → ABEX⊗ from Theorem

3.3.12 and ξ : (ABEX⊗)op → DEF⊗ from Theorem 3.4.4 give an anti-equivalence

between ABEX⊗ and DEF⊗. By the anti-equivalence between ABEX and DEF in

[51], we know that there exist equivalences εA : A → θ(ξ(A )) = fun(Ex(A ,Ab))

for every A ∈ ABEX⊗ and εD : D → ξ(θ(D)) = Ex(fun(D),Ab) for every

(D, C,⊗) ∈ DEF⊗. It remains to prove that these equivalences are morphisms

in ABEX⊗ and DEF⊗ respectively.

Proposition 3.5.1. For any A ∈ ABEX⊗ the functor εA : A → fun(Ex(A ,Ab))

given by εA (A) = evA is monoidal. Here evA : Ex(A ,Ab) → Ab maps an exact

functor F : A → Ab to F (A).

Similarly, for any (D, C,⊗) ∈ DEF⊗ the functor εD : D → Ex(fun(D),Ab)

given by εD(X) = evX : fun(D) → Ab where evX denotes the functor given by

‘evaluation at X’ (as in the proof of Theorem 2.3 in [51]) is a morphism in DEF⊗.

Proof. By [49, Lemma 12.9 and Theorem 12.10] the functor

(A -mod,Ab)fp q−→ (A -mod,Ab)fp/SEx ' fun(Ex(A ,Ab)),

maps a finitely presented functor F : A -mod→ Ab to
−→
F |D that is the restriction

to D of the unique direct limit extension of F . By the Yoneda lemma, εA : A →
fun(Ex(A ,Ab)) is naturally equivalent to the functor

A
Y2

−→ (A -mod,Ab)fp q−→ (A -mod,Ab)fp/SEx ' fun(Ex(A ,Ab)),
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where Y2 : A → (A -mod,Ab)fp denotes the Yoneda embedding A 7→ ((A,−),−).

Therefore, as the Yoneda embedding is monoidal with respect to Day convolution

product and the monoidal structure on fun(Ex(A ,Ab)) is defined such that the

localisation functor q and the equivalence (A -mod,Ab)fp/SEx ' fun(Ex(A ,Ab))

are monoidal, εA is a monoidal functor.

Next we show that, for all (D, C,⊗) in DEF⊗, (εD)0 : fun(Ex(fun(D),Ab)) →
fun(D) is monoidal. By [51], εfun(D) : fun(D)→ fun(Ex(fun(D),Ab)) is an equiva-

lence so we have a functor, γ : fun(Ex(fun(D),Ab))
∼−→ fun(D), which is both right

and left adjoint to εfun(D). We show that (εD)0 is naturally isomorphic to γ.

The unit of the adjunction γ a εfun(D) gives a natural isomorphism

η : Idfun(Ex(fun(D),Ab))
∼−→ εfun(D) ◦ γ.

Now, for X ∈ D and F ∈ fun(Ex(fun(D),Ab)), (εD)0((εfun(D) ◦ γ)(F ))(X) =

ev(γ)(F )(evX) = evX(γ(F )) = γ(F )(X), so (εD)0 ◦ εfun(D) ◦ γ = γ. Therefore the

composition of the natural isomorphism η and the functor (εD)0 gives a natural

isomorphism

(εD)0η : (εD)0 → (εD)0 ◦ εfun(D) ◦ γ = γ.

We have already seen that εfun(D) is monoidal and therefore we can take γ to

also be monoidal (e.g. see [24, Remark 1.5.3]).

Therefore (εD)0 is naturally isomorphic to a monoidal functor and so is itself

a monoidal functor. Hence εD : D → Ex(fun(D,Ab)) is a morphism in DEF⊗ as

required. �

Remark 3.5.2. The following diagram commutes, where the 2-functors denoted

by F are the forgetful 2-functors and the vertical maps are the 2-category anti-

equivalences.

ABEX⊗ ABEX

DEF⊗ DEF

F

Theorem 3.2.1 [51]

F



Chapter 4

Removing the exactness criterion

The content in this chapter is from [59].

As noted in Remark 3.4.3, for our 2-category anti-equivalence to hold, we

required the monoidal structure on the skeletally small abelian category to be

exact in each variable. However, given any fp-hom-closed definable subcategory

D of a finitely accessible category C, which satisfies Assumption 3.3.1, we can

induce a right exact monoidal structure on fun(D) as in Definition 3.3.9. In many

cases, this monoidal structure on the functor category is not left exact. In this

section we consider what can be said about the relationship between definability

and the monoidal structure for fixed C, where we remove the need for the exactness

assumption.

4.1 The Ziegler spectrum

In this subsection we define a coarser topology, Zghom(C), on pinjC such that the

identity morphism Zg(C)→ Zghom(C) is a continuous map.

Theorem 4.1.1. Setting the closed subsets of pinjC to be those given by the in-

decomposable pure-injectives contained in an fp-hom-closed definable subcategory

of C defines a topology on pinjC which we will call the fp-hom-closed Ziegler

topology and denote by Zghom(C).

Proof. We must show that a finite union and arbitrary intersection of closed

81



82 CHAPTER 4. REMOVING THE EXACTNESS CRITERION

subcategories is closed. Abusing notation slightly, we will write D ∩ pinjC for the

isomorphism classes of indecomposable pure-injective objects contained in D, that

is the closed subset of the Ziegler spectrum corresponding to D.

We know (since the Ziegler spectrum defines a topology, e.g. [49, Theorem

14.1]) that given two definable subcategories D and D′, the definable subcategory

generated by their union,
〈
D ∪D′

〉def
, satisfies

〈
D ∪D′

〉def ∩ pinjC = (D ∩ pinjC) ∪ (D′ ∩ pinjC).

We must show that, if D and D′ are fp-hom-closed, then so is
〈
D ∪D′

〉def
. Notice

that the Serre subcategory corresponding to
〈
D ∪ D′

〉def
is given by the inter-

section of the Serre subcategories corresponding to D and D′, say SD and SD′

respectively. By Theorem 3.3.6, SD and SD′ are tensor-ideals so SD ∩ SD′ must

also be a tensor-ideal. Applying Theorem 3.3.6 again gives that
〈
D ∪ D′

〉def
is

fp-hom-closed. It is straightforward to see that the intersection of fp-hom-closed

definable subcategories is fp-hom-closed and this completes the proof. �

Thus we have the following tensor-analogue of Theorem 2.4.33.

Corollary 4.1.2. Let C be as in Assumption 3.3.1. The correspondences in The-

orem 2.4.33 restrict to bijections between:

(i) the fp-hom-closed definable subcategories of C,

(ii) the Serre tensor-ideals of Cfp-mod,

(iii) the closed subsets of Zghom(C).

In particular, the lattice of Serre tensor-ideals of Cfp-mod forms a spatial frame

isomorphic to the lattice of open subsets O(Zghom(C)).

4.2 Tensor product of R-modules

Let us consider the case where C = R-Mod for a commutative ring R. Here,

R-Mod has a closed symmetric monoidal structure with tensor product given by
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⊗R. The tensor unit is R and the internal hom-functor is given by the usual

hom-set with R-module structure given by (rf)(x) = rf(x) = f(rx) for all x ∈ X
where f ∈ hom(X, Y ) = HomR(X, Y ) and r ∈ R. Note that R-mod is a monoidal

subcategory.

The next result shows that if a functor F ∈ (R-mod,Ab)fp belongs to some

Serre subcategory S, and if F is ‘simple enough’ then G⊗R F ∈ S for any finitely

presented functor G.

Definition 4.2.1. Let A be a small preadditive category. The projective di-

mension of a module M ∈ A-Mod is the smallest integer n ≥ 0 such that M

admits a projective resolution

...→ Pn+1 → Pn → ...→ P0 →M → 0,

where all Pi = 0 for all i > n. If no such integer exists, M is said to have infinite

projective dimension. We denote the projective dimension of M by pdim(M).

Proposition 4.2.2. Let R be a commutative ring, S ⊆ (R-mod,Ab)fp be a Serre

subcategory and F ∈ S satisfy pdim(F ) = 0 or pdim(F ) = 1. Then for any

G ∈ (R-mod,Ab)fp, G ⊗ F ∈ S, where ⊗ denotes the tensor product induced by

⊗R on R-Mod.

Proof. By Lemma 3.3.5, we can take G = (C,−). Throughout, let D be the

definable subcategory associated to S as in Theorem 2.4.33.

Suppose F ∈ S satisfies pdim(F ) = 0. Then F = (A,−) for some A ∈ R-mod.

Therefore, for all D ∈ D, (A,D) = 0. For any C ∈ R-mod we have (C,−) ⊗
(A,−) = (C ⊗R A,−). We want to show that for all D ∈ D, (C ⊗R A,D) = 0.

But by the adjunction isomorphism we have (C ⊗R A,D) ∼= (C, hom(A,D)) =

(C, (A,D)) = (C, 0) = 0, so (C,−)⊗ (A,−) ∈ S, as required.

Now suppose F ∈ S satisfies pdim(F ) = 1. Then we have an exact sequence

0→ (B,−)
(f,−)−−−→ (A,−)

π−→ F → 0,

where the map f : A→ B is an epimorphism in R-mod. We want to show that for
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all C ∈ R-mod, (C,−) ⊗ F ∈ S i.e. the map (C ⊗R B,D)
(C⊗Rf,D)−−−−−−→ (C ⊗R A,D)

is an epimorphism for all D ∈ D.

As F ∈ S, (B,D)
(f,D)−−−→ (A,D) is an isomorphism, for every D ∈ D. Therefore

for any C ∈ R-mod, the map (C, (B,D))
(C,(f,D))−−−−−→ (C, (A,D)) is an isomorphism

and the tensor-hom adjunction gives the following commutative diagram.

(C ⊗R B,D) (C ⊗R A,D)

(C, (B,D)) (C, (A,D))

(C ⊗R f,D)

∼= ∼=

∼=

Therefore for any C ∈ R-mod, the map (C ⊗R B,D)
(C⊗Rf,D)−−−−−−→ (C ⊗R A,D) is

an epimorphism for all D ∈ D and (C,−)⊗ F ∈ S as required. �

Remark 4.2.3. Proposition 4.2.2 does not hold for pdim(F ) = 2. Indeed, the

Serre subcategory generated by T in Example 4.2.4 given below provides a counter

example.

The following example is from [50, Section 13].

Example 4.2.4. [50, Section 13] Let R = k[ε : ε2 = 0], where k is any field.

We can define a monoidal structure on the category R-Mod with ⊗ : R-Mod ×
R-Mod → R-Mod given by the usual tensor product of R-modules, ⊗ = ⊗R.

We extend this to a monoidal structure on (R-mod,Ab)fp using Day convolution

product. First note that the only indecomposable R-modules are RR and U =

R/rad(R) = R/
〈
ε
〉 ∼= k. In fact every R-module is isomorphic to a direct sum of

copies of these indecomposable modules. We have R⊗R R ∼= R, R⊗R U ∼= U and

U ⊗R U ∼= U .

Consider the exact sequence 0 →
〈
ε
〉 j−→ R

p−→ U → 0. Let S and T be

determined by the exact sequences 0 → (U,−)
(p,−)−−−→ (R,−) → S → 0 and

0 → (U,−)
(p,−)−−−→ (R,−)

(j,−)−−−→ (
〈
ε
〉
,−) → T → 0 in (R-mod,Ab)fp. By Sec-

tion 13 of [50], the indecomposable functors in (R-mod,Ab)fp are
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S : M 7→ εM,

T : M 7→ annM(ε)/εM,

(U,−) : M 7→ annM(ε),

W : M 7→M/εM,

and

(R,−) : M 7→M.

The table below shows the action of the tensor product on (R-mod,Ab)fp (given

in [50, Section 13.3]).

⊗ S T (U,−) W (R,−)

S S 0 0 S S

T 0 (U,−) (U,−) T T

(U,−) 0 (U,−) (U,−) (U,−) (U,−)

W S T (U,−) W W

(R,−) S T (U,−) W (R,−)

Let us identify the definable subcategories of R-Mod for R = k[ε : ε2 = 0].

Recall that a module M ∈ R-Mod has form M = R(κ) ⊕U (λ) for some cardinals κ

and λ, (see [47, Section 6.8]). If both κ and λ are non-zero, then
〈
M
〉

= R-Mod.

Therefore, the only non-trivial proper definable subcategories of R-Mod are
〈
R
〉

=

{R(κ) : κ a cardinal} and
〈
U
〉

= {U (λ) : λ a cardinal}.
Since ⊗R commutes with direct sums it is easy to see that both

〈
R
〉def

and
〈
U
〉def
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are closed under tensor product and
〈
U
〉def

is a tensor-ideal in R-Mod. Further-

more, we have hom(R,−) = HomR(R,−) ∼= IdR-Mod and therefore hom(R,U) ∼=
U . It can also be checked that hom(U,U) ∼= U . Any object in

〈
U
〉def

can be written

as a direct limit of finite powers of U and for any N ∈ R-mod, hom(N,−) com-

mutes with direct limits. Therefore, since hom(−,−) commutes with finite direct

sums in both variables, hom(R,U) ∼= U and hom(U,U) ∼= U is enough to imply

that
〈
U
〉def

is fp-hom-closed. On the other hand, hom(U,R) ∼= U meaning
〈
R
〉def

is not fp-hom-closed.

Next let us consider the corresponding Serre subcategories. First take D =〈
U
〉def

. Then

S(U) = εU = 0,

T (U) = annU(ε)/εU = U/0 ∼= U,

(U,−)(U) = annU(ε) = U,

W (U) = U/εU = U/0 ∼= U

and

(R,−)(U) = U.

Therefore SD is generated by the indecomposable functor S and indeed consists just

of direct sums of copies of S. As pdim(S) = 1, by Proposition 4.2.2, G⊗S ∈ SD for

every finitely presented G : R-mod→ Ab. Therefore, SD is a Serre tensor-ideal.

Now take D =
〈
R
〉def

. Then

S(R) = εR = U,

T (R) = annR(ε)/εR = U/U ∼= 0,
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(U,−)(R) = annR(ε) = U,

W (R) = R/εR = U

and

(R,−)(R) = R.

Therefore SD is generated by the indecomposable functor T . As T ⊗T ∼= (U,−)

this Serre subcategory is not closed under tensor product.

In summary we get the following table, where
〈 〉def

denotes ‘the definable sub-

category generated by’ and
〈 〉S

denotes ‘the Serre subcategory generated by’.

Definable Monoidal fp-hom- Tensor- Serre Monoidal Tensor-
subcat. subcat. closed ideal subcat. subcat. ideal

0 Yes Yes Yes (R-mod,Ab)fp Yes Yes〈
U
〉def

Yes Yes Yes
〈
S
〉S

Yes Yes〈
R
〉def

Yes No No
〈
T
〉S

No No

R-Mod Yes Yes Yes 0 Yes Yes

So the Ziegler topology Zg(R-Mod) has underlying set {[R], [U ]} with the dis-

crete topology, whereas Zghom(R-Mod) has closed subsets ∅, {[U ]} and {[R], [U ]}.

4.2.1 Von Neumann regular rings

Let us consider the example of von Neumann regular rings.

Definition 4.2.5. A ring R is von Neumann regular if for every x ∈ R there

exists some y ∈ R such that x = xyx.

Proposition 4.2.6. Let R be a commutative von Neumann regular ring, so the
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normal tensor product of rings, ⊗R, is a symmetric closed monoidal structure on

R-Mod. Every definable subcategory of R-Mod is fp-hom-closed.

Proof. The global dimension of (R-mod,Ab)fp is zero if and only if R is von

Neumann regular (e.g. see [48, Proposition 10.2.20]). Thus by Lemma 4.2.2, for R

von Neumann regular, every Serre subcategory of (R-mod,Ab)fp is a tensor-ideal

and therefore, by Theorem 3.3.6, every definable subcategory is fp-hom-closed.

�

Proposition 4.2.7. Let R be a commutative von Neumann regular ring, so the

normal tensor product of rings, ⊗R, is a symmetric closed monoidal structure

on R-Mod. Every fp-hom-closed definable subcategory D of R-Mod satisfies the

exactness criterion.

Proof. R is von Neumann regular if and only if every (left) R-module is flat,

that is for every M ∈ R-Mod, M ⊗R − : R-Mod → Ab is exact (e.g. see [48,

Theorem 2.3.22]). Therefore, sinceR is commutative, we obtain a symmetric closed

monoidal product on R-Mod which is exact in each variable. Furthermore, by [48,

Proposition 10.2.38] we have (R-mod,Ab)fp ' (R-mod)op ' R-mod where the

direction R-mod→ (R-mod,Ab)fp is given by the Yoneda embedding. Therefore,

this equivalence is monoidal with respect to Day convolution product. In other

words, letting D = R-Mod, fun(D) = (R-mod,Ab)fp ' R-mod has an additive

symmetric monoidal structure which is exact in each variable and coincides with

the monoidal structure defined in Definition 3.3.9. Thus, by Proposition 3.3.11,

D = R-Mod satisfies the exactness criterion. Consequently any fp-hom-closed

definable subcategory of R-Mod also satisfies the exactness criterion. �

Remark 4.2.8. By Proposition 4.2.1, for R commutative and von Neumann regular,

Zg(R-Mod) and Zghom(R-Mod) are the same topology. Furthermore, by Propo-

sition 4.2.7 and Proposition 3.3.10, for every definable subcategory D ⊆ R-Mod,

we can induce an exact, additive, closed, symmetric monoidal structure on the

corresponding functor category fun(D).

By [48, Proposition 3.4.30] the definable subcategory generated by M ∈ R-Mod

is given by (R/annR(M))-Mod viewed as a full subcategory of R-Mod via R →
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R/annR(M). Therefore, it is easy to see directly that
〈
M
〉def

is fp-hom-closed.

Futhermore, the associated Serre subcategory of (R-mod,Ab)fp ' R-mod is given

by {X ∈ R-mod : (X,M) = 0}.

4.2.2 Coherent rings

Now we consider the case where R is coherent.

Definition 4.2.9. A commutative ring R is coherent if every finitely generated

ideal is finitely presented, equivalently if every finitely presented R-module is co-

herent in the sense of Definition 2.4.18.

We can see by the above definition that a commutative ring R is coherent if and

only if the category R-Mod is locally coherent. Therefore, by Example 2.4.19, the

subcategory Abs-R ⊆ Mod-R of absolutely pure modules is definable. In addition,

by Lemma 2.4.28 R-mod is abelian.

Recall that an object X of a locally finitely presented abelian category is ab-

solutely pure if and only if it is fp-injective (see Proposition 2.4.17). We have the

following lemma.

Lemma 4.2.10. Let C be a locally finitely presented abelian category with an ad-

ditive closed symmetric monoidal structure such that Cfp forms a monoidal subcat-

egory. Suppose X ∈ C and U ∈ Cfp are such that hom(U,X) is absolutely pure.

Let f : A→ B be a morphism in Cfp. If f : A→ B is a monomorphism in C, then

every morphism h : U ⊗ A→ X factors through U ⊗ f .

Proof. Via the tensor-hom adjunction there exists some h′ : U ⊗ B → X such

that h = h′ ◦ (U ⊗ f) if and only if there exists some ĥ′ : B → hom(U,X) such

that ĥ = ĥ′ ◦ f where ĥ : A → hom(U,X) is the morphism corresponding to h

via the adjunction isomorphism (U ⊗ A,X) ∼= (A, hom(U,X)). But hom(U,X)

is absolutely pure and f : A → B is a monomorphism with A,B ∈ Cfp so as

hom(U,X) is fp-injective, we get ĥ factors via f as required. �

Proposition 4.2.11. Let R be a commutative coherent ring. Any fp-hom-closed

definable subcategory D of Abs-R satisfies the exactness criterion.
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Proof. Suppose f : A→ B and g : U → V are morphisms in mod-R and X ∈ D.

Suppose further that h : A ⊗ U → X satisfies h = h′ ◦ (f ⊗ U) = h′′ ◦ (A ⊗ g)

for some h′ : B ⊗ U → X and h′′ : A ⊗ V → X, that is the following diagram

commutes.

A⊗ U B ⊗ U

A⊗ V X

f ⊗ U

A⊗ g h′

h′′

As mod-R is abelian, we have exact sequences in mod-R, 0 → A′
k−→ A

f−→ B

and U
g−→ V

c−→ W → 0 where k : A′ → A is the kernel of f and c : V → W is

the cokernel of g. Furthermore, since A′ ⊗− : mod-R→ mod-R is right exact we

have an exact sequence

A′ ⊗ U A′⊗g−−−→ A′ ⊗ V A′⊗c−−−→ A′ ⊗W → 0.

Now h′′ ◦ (k⊗V )◦ (A′⊗ g) = h′′ ◦ (A⊗ g)◦ (k⊗U) = h′ ◦ (f ⊗U)◦ (k⊗U) = 0.

Therefore, h′′ ◦ (k ⊗ V ) factors via A′ ⊗ c, say h′′ ◦ (k ⊗ V ) = l ◦ (A′ ⊗ c) for some

l : A′ ⊗W → X.

A′ ⊗ U A′ ⊗ V A′ ⊗W 0

A⊗ V A⊗W

X

A′ ⊗ g A′ ⊗ c

k ⊗ V

h′′

k ⊗W

l′

l

Note that D ⊆ Abs-R is fp-hom-closed so hom(W,X) is absolutely pure. In

addition, k : A′ → A is a monomorphism therefore applying Lemma 4.2.10, l :

A′ ⊗W → X factors via k ⊗W , say l = l′ ◦ (k ⊗W ), where l′ : A⊗W → X.

We have h′′◦(k⊗V ) = l′◦(A⊗c)◦(k⊗V ). Setting r = h′′−l′◦(A⊗c) : A⊗V → X
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we have r ◦ (k ⊗ V ) = 0. Let r̂ : A→ hom(V,X) be the morphism corresponding

to r : A⊗ V → X via the adjunction isomorphism. Then r̂ ◦ k = 0.

Now recall that mod-R is abelian and we have exact sequence 0→ A′
k−→ A

f−→
B. Therefore, coker(k) = im(f). Write f : A→ B as if ◦πf where πf : A→ im(f)

is the cokernel of k and if : im(f) → B is a monomorphism. Then r̂ factors

via πf : A → im(f), or equivalently, r factors via πf ⊗ V , say r = r′ ◦ (πf ⊗ V ).

Noting that hom(V,X) is absolutely pure, we may apply Lemma 4.2.10 to get that

r′ = r′′ ◦ (if ⊗ V ) that is r factors via f ⊗ V .

Finally note that h = h′′◦(A⊗g) = r◦(A⊗g) = r′′◦(f⊗V )◦(A⊗g) = r′′◦(f⊗g).

Therefore we have shown that h factors via f ⊗g and the exactness criterion holds

for D. �

Remarks 4.2.12. (i) Proposition 4.2.11 also holds if we replace R by any skele-

tally small preadditive category A such that A-Mod is locally coherent.

(ii) Coherent rings are precisely those rings R for which the theory of modules

in the language of R-modules has a model companion [23, Theorem 4.1 and

Theorem 4.8].

4.3 A rigidity assumption

Next we move on to the context where Cfp forms a rigid monoidal subcategory

of C. In this setting, we get the following corollary to Theorem 3.3.6, giving a

definable tensor-ideal/Serre tensor-ideal correspondence.

Corollary 4.3.1. Let C be a finitely accessible category with products and suppose

that (C,⊗, 1) is a closed symmetric monoidal category such that Cfp is a symmetric

rigid monoidal subcategory. Let S be a Serre subcategory of Cfp-mod and let D be

the corresponding definable subcategory of C as in (Theorem 2.4.33).

Then, S is a Serre tensor-ideal of Cfp-mod with respect to the induced tensor

product if and only if D is a definable tensor-ideal of C.

Proof. By Theorem 3.3.6 we have that S is a Serre tensor-ideal if and only if D is

fp-hom-closed. By rigidity of Cfp, there exists a natural equivalence hom(A,−) ∼=
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A∨ ⊗ − for all A ∈ Cfp, therefore D is fp-hom-closed if and only if it is closed

under tensoring with objects of Cfp. Suppose X ∈ C and D ∈ D. As C is finitely

accessible we can write X as a direct limit X = lim−→i∈IXi where the Xi are finitely

presented. Therefore, if D is closed under tensoring with objects of Cfp, then

X ⊗D ∼= (lim−→i∈IXi)⊗D ∼= lim−→i∈I(Xi ⊗D) ∈ D, as −⊗D commutes with direct

limits and D is closed under direct limits. �

4.3.1 Examples satisfying the rigidity condition

Example 4.3.2 below gives a class of examples where the assumptions of Corollary

4.3.1 are satisfied.

Example 4.3.2. Let G be a finite group and k be a field. The category of left kG-

modules, kG-Mod has a closed symmetric monoidal structure with tensor product

⊗k. Furthermore, the finitely generated left kG-modules form a symmetric rigid

monoidal subcategory, kG-mod.

Therefore, applying Corollary 4.3.1, the definable tensor-ideals of kG-Mod cor-

respond bijectively with the Serre tensor-ideals of (kG-mod,Ab)fp.

In particular let us consider an example from [50, Section 13].

Example 4.3.3. [50, Section 13] Consider R = k[ε : ε2 = 0] as in Example 4.2.4

but suppose further that the field k has characteristic 2. Then R is a group ring.

Indeed if we set ε+ 1 = g and let G =
〈
g : g2 = 1

〉 ∼= C2, then it is easy to see that

R ∼= kG as rings. We can define a new tensor product ⊗ : R-Mod × R-Mod →
R-Mod given by M ⊗ N = M ⊗k N and where the action of R is determined by

g(M ⊗N) = gM ⊗ gN .

Note that here the tensor unit is given by U and the tensor product satisfies

R ⊗k R ∼= R2. We will use the notation of Example 4.2.4. The table below shows

how this tensor product extends to (R-mod,Ab)fp (See Section 13.5 of [50] for

details of the calculation.)
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⊗ S T (U,−) W (R,−)

S W 0 S W (R,−)

T 0 T T 0 0

(U,−) S T (U,−) W (R,−)

W W 0 W W (R,−)

(R,−) (R,−) 0 (R,−) (R,−) (R,−)2

We get the following definable subcategory/Serre subcategory correspondence,

where, as required by Corollary 4.3.1, there is a one-to-one correspondence between

the definable tensor-ideals of R-Mod and the Serre tensor-ideals of (R-mod,Ab)fp.

Definable Monoidal Tensor- Serre Monoidal Tensor-
subcategory subcategory ideal subcategory subcategory ideal

0 Yes Yes (R-mod,Ab)fp Yes Yes〈
U
〉def

Yes No
〈
S
〉S

No No〈
R
〉def

Yes Yes
〈
T
〉S

Yes Yes

R-Mod Yes Yes 0 Yes Yes

So the fp-hom-closed Ziegler topology, Zghom(R-Mod), has underlying set

{[R], [U ]} and closed subsets ∅, {[R]} and {[R], [U ]}. As one might expect,

Zghom(R-Mod) is different in this example to Example 4.2.4, where R is the same

but the monoidal structure is different.

4.4 Elementary duality

Throughout this subsection assume A is a small preadditive category with an

additive rigid monoidal structure. We show that elementary duality (see Theorem
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2.4.8) maps fp-hom-closed definable subcategories of Mod-A to definable tensor-

ideals of A-Mod.

Notation 4.4.1. We will denote the monoidal structure on A by ⊗, while ⊗A
denotes the tensor product of A-modules given in Definition 2.4.7.

Definition 4.4.2. Given a finitely presented right A-module M ∈ mod-A with

presentation

(−,m1)
(−,m)−−−→ (−,m2)→M → 0

where m : m1 → m2 is a morphism in A, define (up to isomorphism) the finitely

presented left A-module M̌ ∈ A-mod to have presentation

(m∨1 ,−)
(m∨,−)−−−−→ (m∨2 ,−)→ M̌ → 0,

where m∨ : m∨2 → m∨1 is the dual morphism to m in A.

Similarly, given a finitely presented left A-module N ∈ A-mod with presenta-

tion

(n2,−)
(n,−)−−−→ (n1,−)→ N → 0

where n : n1 → n2 is a morphism in A, define (up to isomorphism) the finitely

presented right A-module Ň ∈ mod-A to have presentation

(−, n∨2 )
(−,n∨)−−−−→ (−, n∨1 )→ Ň → 0,

where n∨ : n∨2 → n∨1 is the dual morphism to n in A.

Proposition 4.4.3. Let A be a small preadditive category with an additive sym-

metric rigid monoidal structure and induce monoidal structures on A-Mod and

Mod-A via Day convolution product.

The maps ˇ(−) : A-mod ↔ mod-A give an equivalence between A-mod and

mod-A.

Proof. Fix a presentation for each N ∈ A-mod. First let us show that ˇ(−) :

A-mod → mod-A is functorial. Suppose h : N → N ′ is a morphism in A-mod

where N and N ′ have presentations (n2,−)
(n,−)−−−→ (n1,−) → N → 0 and

(n′2,−)
(n′,−)−−−→ (n′1,−)→ N ′ → 0 respectively.
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By projectivity of representables we can choose h1 : n′1 → n1 and h2 : n′2 → n2

such that the following diagram commutes.

(n2,−) (n1,−) N 0

(n′2,−) (n′1,−) N ′ 0

(n,−)

(n′,−)

(h2,−) (h1,−) h

Thus, n ◦ h1 = h2 ◦ n′ and dualising we get h∨1 ◦ n∨ = n′∨ ◦ h∨2 . Therefore we

have the following commutative diagram where the map ȟ is uniquely determined.

(−, n2
∨) (−, n1

∨) Ň 0

(−, n′2
∨) (−, n′1

∨) Ň ′ 0

(−, n∨)

(−, n′∨)

(−, h∨2 ) (−, h∨1 ) ȟ

It is straightforward to check that any choice of h1 and h2 induce the same

map ȟ and functoriality of (−)∨ : A → A implies functoriality of ˇ(−). So (given

a choice of presentation for all N ∈ A-mod) we have a well-defined functor, ˇ(−) :

A-mod → mod-A. Furthermore, since we have a natural isomorphism 1A →
((−)∨)∨, by construction, the functor ˇ(−) : mod-A → A-mod defined similary

(fixing a presentation for each N ∈ A-mod) clearly gives a quasi-inverse. �

Lemma 4.4.4. For every L ∈ Mod-A, M ∈ mod-A and N ∈ A-Mod, we have

an isomorphism

(L⊗M)⊗A N ∼= L⊗A (M̌ ⊗N),

natural in L and N .

Proof. First let us prove that for every a ∈ A, we have an isomorphism (L ⊗
(−, a)) ⊗A N ∼= L ⊗A ((a∨,−) ⊗ N) which is natural in N and L. Recall that

−⊗A N and −⊗ (−, a) are both right exact and therefore preserve direct limits.

Therefore, as Mod-A is locally finitely presentable, it is sufficient to assume that
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L is finitely presented. Suppose L has presentation (−, l1)
(−,l)−−→ (−, l2)→ L→ 0.

By right exactness of −⊗A N and −⊗ (−, a) we have an exact sequence

(−, l1 ⊗ a)⊗A N
(−,l⊗a)⊗AN−−−−−−−→ (−, l2 ⊗ a)⊗A N → (L⊗ (−, a))⊗A N → 0.

By definition of ⊗A, (−, l⊗a)⊗AN : (−, l1⊗a)⊗AN → (−, l2⊗a)⊗AN is given

by N(l ⊗ a) : N(l1 ⊗ a) → N(l2 ⊗ a). Thus by the Yoneda lemma we have the

following commutative diagram in Ab.

(−, l1 ⊗ a)⊗A N (−, l2 ⊗ a)⊗A N

((l1 ⊗ a,−), N) ((l2 ⊗ a,−), N)

(−, l ⊗ a)⊗A N

((l ⊗ a,−), N)

∼= ∼=

By considering Lemma 3.3.8, we see that (a∨,−) ⊗ − : A-Mod → A-Mod

is right adjoint to (a,−) ⊗ − : A-Mod → A-Mod. Thus we have the following

commutative diagram where the first row of downwards arrows is given by the

adjointness isomorphisms and the second row is given by the Yoneda lemma.

((l1 ⊗ a,−), N) ((l2 ⊗ a,−), N)

((l1,−), (a∨,−)⊗N) ((l2,−), (a∨,−)⊗N)

((a∨,−)⊗N)(l1) ((a∨,−)⊗N)(l2)

((l ⊗ a,−), N)

((l,−), (a∨,−)⊗N)

∼= ∼=

((a∨,−)⊗N)(l)

∼= ∼=

By the definition of ⊗A we have ((a∨,−) ⊗ N)(l) = (−, l) ⊗A ((a∨,−) ⊗ N).
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Furthermore, by right exactness of −⊗A ((a∨,−)⊗N) we have an exact sequence

(−, l1)⊗A ((a∨,−)⊗N)
(−,l)⊗A((a∨,−)⊗N)−−−−−−−−−−−→(−, l2)⊗A ((a∨,−)⊗N)

→ L⊗A ((a∨,−)⊗N)→ 0.

Thus we have an induced isomorphism (L ⊗ (−, a)) ⊗A N ∼= L ⊗A ((a∨,−) ⊗ N)

as shown on the commutative diagram below.

(−, l1 ⊗ a)⊗A N (−, l2 ⊗ a)⊗A N (L⊗ (−, a))⊗A N 0

((l1 ⊗ a,−), N) ((l2 ⊗ a,−), N)

((l1,−), (a∨,−)⊗N) ((l2,−), (a∨,−)⊗N)

(−, l1)⊗A ((a∨,−)⊗N) (−, l2)⊗A ((a∨,−)⊗N) L⊗A ((a∨,−)⊗N) 0

(−, l ⊗ a)⊗A N

((l ⊗ a,−), N)

((l,−), (a∨,−)⊗N)

∼= ∼=

(−, l)⊗A ((a∨,−)⊗N)

∼= ∼=

∼= ∼=

As each of the isomorphisms in the first and second columns are natural in

(−, li) and N , the induced isomorphism is natural in L and N . Furthermore, by

properties of dual morphisms in A we have that for every m : m1 → m2 in A the

following square commutes for i=1, 2.

((li ⊗m1,−), N) ((li ⊗m2,−), N)

((li,−), (m∨1 ,−)⊗N) ((li,−), (m∨2 ,−)⊗N)

((li ⊗m,−), N)

((li,−), (m∨,−)⊗N)

∼= ∼=

Therefore the induced isomorphisms (L⊗ (−,mi))⊗AN ∼= L⊗A ((m∨i ,−)⊗N)

for i = 1, 2 commute with any morphism m : m1 → m2 in A in the following sense.
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(L⊗ (−,m1))⊗A N (L⊗ (−,m2))⊗A N (L⊗M)⊗A N 0

L⊗A ((m∨1 ,−)⊗N) L⊗A ((m∨2 ,−)⊗N) L⊗A (M̌ ⊗N) 0

(L⊗ (−,m))⊗A N

L⊗A ((m∨,−)⊗N)

∼= ∼= ∼=

Hence the desired isomorphism (L⊗M)⊗AN ∼= L⊗A (M̌ ⊗N) is determined

uniquely by the commutative diagram shown above. �

Theorem 4.4.5. Let A be a small preadditive category with an additive, sym-

metric, rigid, monoidal structure and induce monoidal structures on A-Mod and

Mod-A via Day convolution product.

A definable subcategory D ⊆ Mod-A is fp-hom-closed if and only if the dual

definable subcategory Dd ⊆ A-Mod is a tensor-ideal.

Proof. By Theorem 3.3.6, D ⊆ Mod-A is an fp-hom-closed definable subcategory

if and only if the corresponding Serre subcategory S ⊆ (mod-A,Ab)fp is a tensor-

ideal.

By [48, Proposition 10.3.5], every functor in the dual Serre subcategory Sd ⊆
(A-mod,Ab)fp has the form F d

f with copresentation

0→ F d
f → A⊗A −

f⊗A−−−−→ B ⊗A −

for some Ff ∈ S. Therefore, X ∈ Dd if and only if for every f : A → B in A
such that Ff ∈ S, F d

f (X) = 0 equivalently, f ⊗A X : A ⊗A X → B ⊗A X is a

monomorphism.

By Lemma 3.3.5, S is a tensor-ideal if and only if S is closed under tensoring

with representables, that is, for all Ff ∈ S and all M ∈ mod-A, (M,−) ⊗ Ff =

FM⊗f ∈ S. Thus D is fp-hom-closed if and only if Dd satisfies the following:

X ∈ Dd if and only if for every Ff ∈ S, and every M ∈ mod-A,

(M ⊗ f)⊗A X : (M ⊗ A)⊗A X → (M ⊗B)⊗A X
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is a monomorphism. But by Lemma 4.4.4,

(M ⊗ f)⊗A X : (M ⊗ A)⊗A X → (M ⊗B)⊗A X

is a monomorphism if and only if

f ⊗A (M̌ ⊗X) : A⊗A (M̌ ⊗X)→ B ⊗A (M̌ ⊗X)

is a monomorphism. Therefore, D is fp-hom-closed if and only if for every X ∈ Dd

and all M ∈ mod-A, M̌⊗X ∈ Dd or equivalently for all N ∈ A-mod, N⊗X ∈ Dd

as ˇ(−) is an equivalence (see Proposition 4.4.3). That is, D is a fp-hom-closed if

and only if Dd is closed under tensoring with finitely presented left A-modules if

and only if Dd is a tensor-ideal, as required. �



Chapter 5

Definable subcategories of tensor

triangulated categories

In the rest of the thesis we focus on the triangulated setting. In this section

we consider the relationship between definable subcategories and the monoidal

structure in a rigidly-compactly generated tensor triangulated category. Fix a

rigidly-compactly generated tensor triangulated category T .

5.1 T -tensor-closed definable subcategories

Since T c is a skeletally small, symmetric monoidal category, we can induce a

symmetric closed monoidal structure on Mod-T c via Day convolution product

(see Section 2.2 and [11, Appendix A]). The following lemma shows that rigidity

of T c implies that representable functors in Mod-T c are also rigid.

Lemma 5.1.1. For C ∈ T c, the functor (−, C)⊗− : Mod-T c → Mod-T c, where

for F ∈ Mod-T c, (−, C) ⊗ F is defined by Day convolution product, is both right

and left adjoint to (−, C∨)⊗−. In particular, (−, C)⊗− is exact and commutes

with products and direct limits.

Proof. We will define the unit and counit and the adjunctions.

For each F ∈ Mod-T c define ηF : F → (−, C∨)⊗ (−, C)⊗F to be (−, ηC)⊗F
where ηC : 1 → C∨ ⊗ C is the unit of the adjunction (C ⊗ −) a (C∨ ⊗ −)

100
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evaluated at the tensor unit, 1. Similarly, for each F ∈ Mod-T c define εF :

(−, C)⊗ (−, C∨)⊗F → F to be (−, εC)⊗F where εC : C ⊗C∨ → 1 is the counit

of the adjunction (C ⊗−) a (C∨ ⊗−) evaluated at the tensor unit, 1.

Clearly the above define natural transformations η and ε. Furthermore, the tri-

angle identities follow easily from the identities on ηC and εC . Therefore (−, C∨)⊗
− is right adjoint to (−, C)⊗−.

For each F ∈ Mod-T c define η′F : F → (−, C)⊗ (−, C∨)⊗F to be (−, η′C)⊗F
where η′C : 1 → C ⊗ C∨ is the unit of the adjunction (C∨ ⊗ −) a (C ⊗ −)

evaluated at the tensor unit, 1. Similarly, for each F ∈ Mod-T c define ε′F :

(−, C∨)⊗ (−, C)⊗F → F to be (−, ε′C)⊗F where ε′C : C∨⊗C → 1 is the counit

of the adjunction (C∨⊗−) a (C ⊗−) evaluated at the tensor unit, 1. Again, this

defines natural transformations η′ and ε′ and the triangle identities follow easily

from the identities on η′C and ε′C . So (−, C∨)⊗− is left adjoint to (−, C)⊗−. �

Next we define a monoidal structure on (the skeleton of) Coh(T ). For repre-

sentables, define (A,−) ⊗ (B,−) = (A ⊗ B,−) for all A, B ∈ T c. Now suppose

that the tensor product is right exact. Therefore, if Ff , Fg ∈ Coh(T ) have pre-

sentations

(B,−)
(f,−)−−−→ (A,−)→ Ff → 0

and

(V,−)
(g,−)−−−→ (U,−)→ Fg → 0,

then Ff ⊗ Fg has presentation

((B ⊗ U)⊕ (A⊗ V ),−)

((
f⊗U
A⊗g

)
,−
)

−−−−−−−→ (A⊗ U,−)→ Ff ⊗ Fg → 0.

It can easily be checked that this definition is well-defined up to isomorphism.

Note that since Serre subcategories are isomorphism-closed, the definition of a

Serre tensor-ideal of Coh(T ) makes sense, despite only having defined the monoidal

structure up to isomorphism.
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Proposition 5.1.2. [36, Lemma 7.2] There is a duality

δ : (mod-T c)op ∼−→ Coh(T ),

given by G 7→ δG where δG(X) = Mod-T c(G,HX) for any X ∈ T .

Another way of describing this functor (up to isomorphism) is as follows.

Lemma 5.1.3. [36, proof of Lemma 7.2] If Gf ∈ mod-T c has presentation

(−, A)
(−,f)−−−→ (−, B)→ Gf → 0,

then δGf ∈ Coh(T ) has presentation

(ΣA,−)
(f ′′,−)−−−−→ (C,−)→ δGf → 0,

where A
f−→ B

f ′−→ C
f ′′−→ ΣA is an exact triangle in T c. That is δGf

∼= Ff ′′ (see

Notation 2.5.6).

Proof. Suppose Gf ∈ mod-T c has presentation (−, A)
(−,f)−−−→ (−, B)

πf−→ Gf → 0.

Then for any X ∈ T , δGf (X) = Mod-T c(Gf , HX). Suppose α : Gf → HX , then

πF ◦ α = (−, h) for some h : B → X by Yoneda’s lemma.

(−, A) (−, B) Gf 0

HX

(−, f) πf

α(−, h)

Furthermore h ◦ f = 0 and given any h′ : B → X such that h′ ◦ f = 0, (−, h′)
must factor through πf , say (−, h′) = α′ ◦ πf for some α′ : Gf → HX . Therefore

as abelian groups we have δGf (X) ∼= {h : B → X : h ◦ f = 0}. Now consider the

exact triangle A
f−→ B

f ′−→ C
f ′′−→ ΣA. A morphism h : B → X satisfies h ◦ f = 0

if and only if h factors as h = g ◦ f ′ for some g : C → X. Clearly − ◦ f ′ induces

an isomorphisms (C,X)\{g : C → X : g = g′ ◦ f ′′} ∼−→ {h : B → X : h = g ◦ f ′}.
Therefore for all X ∈ T , δGf (X) ∼= (C,X)\{g : C → X : g = g′ ◦ f ′′} ∼= Ff ′′(X),
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where Ff ′′ ∈ Coh(T ) has presentation (ΣA,−)
(f ′′,−)−−−−→ (C,−) → Ff ′′ → 0. It

is straight forward to check that these isomorphisms are natural and therefore

δGf
∼= Ff ′′ . �

We also denote the (unique up to natural isomorphism) inverse equivalence

Coh(T )op ∼−→ mod-T c by δ. The monoidal structure on Coh(T ) defined above

is such that the functors δ in both directions are monoidal with respect to Day

convolution product on mod-T c. That is, for F,G ∈ Coh(T ) we have F ⊗ G ∼=
δ(δF ⊗ δG).

As δ is an equivalence, if S ⊆ Coh(T ) is a Serre subcategory, δS ⊆ mod-T c

given by applying δ to each functor in S, is also a Serre subcategory. Let D ⊆ T
denote the definable subcategory consisting of allX ∈ T annihilated by all functors

in S. Then G ∈ δS if and only if δG ∈ S if and only if (G,HX) = 0 for all X ∈ D.

With Notation 2.5.6 in mind, have the following Lemma.

Lemma 5.1.4. [4, Lemma 2.2] Suppose A
f−→ B

f ′−→ C
f ′′−→ ΣA is a distinguished

triangle in T c. Furthermore, suppose J is a cohomological ideal of morphisms in

T c with corresponding Serre subcategory S ⊆ Coh(T ) (see Theorem 2.5.11) and

set C = δS ⊆ mod-T c. Then the following are equivalent:

(i) f ′ ∈ J ;

(ii) Gf ∈ C ⊆ mod-T c;

(iii) Ff ′′ ∈ S ⊆ Coh(T ).

Proof. (ii) ⇐⇒ (iii) Holds by Lemma 5.1.3.

(i) ⇐⇒ (iii) (f ′, D) = 0 if and only if every morphism C → D factors via f ′′

if and only if Ff ′′(D) = 0. �

Lemma 5.1.4 gives us a clear ‘picture’ of the connections explored in [36] be-

tween the homological ideals of morph(T c), the Serre subcategories of Coh(T ) and

the Serre subcategories of mod-T c.
Proposition 5.1.6 below shows that with respect to the monoidal structures

defined above, δ sends Serre tensor-ideals to Serre tensor-ideals. First we give a

useful lemma.
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Lemma 5.1.5. A Serre subcategory S of Coh(T ) is a tensor-ideal of Coh(T ) if

and only if for all F ∈ Coh(T ) and A ∈ T c,

F ⊗ (A,−) ∈ S.

Proof. The same argument as [12, Lemma 2.12]. �

Proposition 5.1.6. The equivalence δ : (mod-T c)op ∼−→ Coh(T ) maps Serre

tensor-ideals of mod-T c to Serre tensor-ideals of Coh(T ).

Proof. By Lemma 5.1.5, S is a Serre tensor-ideal of Coh(T ) if and only if S is

closed under tensoring with representables. But S is closed under tensoring with

representables if and only if for every Ff ′′ ∈ S and C ∈ T c, Fc⊗f ′′ ∈ S. By

Lemma 5.1.4, and noting that for all C ∈ T c, C⊗− sends exact triangles to exact

triangles, this property is equivalent to saying, that for all Gf ∈ δS ⊆ mod-T c

and for all C ∈ T c, GC⊗f ∈ δS, equivalently, δS is closed under tensoring with

representable functors. It remains to apply [12, Lemma 2.12], which gives that δS

is a Serre tensor-ideal of mod-T c if and only if it is closed under tensoring with

representable functors. �

Definition 5.1.7. We say that a definable subcategory D of T is T c-tensor-

closed (respectively T -tensor-closed) if for all X ∈ T c (respectively X ∈ T )

and for all Y ∈ D, X ⊗ Y ∈ D.

We say thatD ⊆ T is a definable tensor-ideal ifD is a definable subcategory,

T -tensor-closed and triangulated.

We say that a cohomological ideal J in T c is T c-tensor-closed if for every

f : A→ B in J and every C ∈ T c, C ⊗ f ∈ J .

The following theorem gives a tensor-analogue of 2.5.11.

Theorem 5.1.8. Let T be a rigidly-compactly generated tensor triangulated cate-

gory, D be a definable subcategory of T , S be the corresponding Serre subcategory

of Coh(T ), C = δS ⊆ mod-T c and J be the corresponding cohomological ideal of

morphisms in T c (see 2.5.11). The following are equivalent:
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(i) D is T -tensor-closed;

(ii) D is T c-tensor-closed;

(iii) S is a Serre tensor-ideal;

(iv) S is closed under tensoring with representable functors;

(v) C is a Serre tensor-ideal;

(vi) C is closed under tensoring with representable functors;

(vii) J is T c-tensor-closed.

Remark 5.1.9. Recall from Section 2.5, that every pp formula in the language

L (T ) is equivalent to a division formula φf of the form ∃yB, xA = yBf for some

f : A → B in T c. By Proposition 2.5.4, φf is equivalent to φf ′ for f ′ : A → B′ if

and only if there exist morphisms k : B → B′ and l : B′ → B such that f = l ◦ f ′

and f ′ = k ◦f . Note that this defines an equivalence relation on morph(T c). Thus

there is a bijective correspondence between the equivalence classes of pp formulas

in L (T ) and the equivalence classes of morph(T c) with respect to the equivalence

relation defined above.

Furthermore, viewing pp formulas as morphisms in T c, the set, I, of pp for-

mulas that ‘define’ a definable subcategory D ⊆ T , in the sense that

D = {X ∈ T : φf (X) = 0, ∀f ∈ I},

is given by the cohomological ideal

I = J = {f ∈ morph(T c) : (f,X) = 0, ∀X ∈ D}.

In order to prove Theorem 5.1.8 we first give some Lemmas.

Lemma 5.1.10. [57, Lemma 2.12] Fix C ∈ T c and let α denote the natural

isomorphism

α : C∨ ⊗− → hom(C,−),
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of functors T c → T c, with components αA : C∨ ⊗ A → hom(C,A) given by the

natural evaluation map for all A ∈ T c.
The natural isomorphism α extends to a natural isomorphism of functors T →

T . In particular, for every C ∈ T c and X ∈ T the natural evaluation map,

C∨ ⊗X → hom(C,X),

is an isomorphism.

Lemma 5.1.11. A definable subcategory D of T is T c-tensor-closed if and only if

it is T -tensor-closed.

Proof. Suppose D is T c-tensor-closed. As D is definable, X ∈ D if and only if

(f,X) = 0 for all f ∈ J , where J ⊆ morph(T c) is the associated (by Theorem

2.5.11) cohomological ideal. Suppose f ∈ J where f : A → B and U ∈ T c. If

l : U ⊗ B → X then the adjunction between U ⊗ − and U∨ ⊗ − gives a map

l̂ : B → U∨⊗X. As D is T c-tensor-closed, U∨⊗X ∈ D so l̂ ◦ f = 0. This implies

that l ◦ (U ⊗ f) = 0. Therefore, for every U ∈ T c, (U ⊗ f,X) = 0. Consider the

following commutative diagram in Ab.

(U ⊗B, X) (U, B∨ ⊗X)

(U ⊗ A, X) (U, A∨ ⊗X)

(U ⊗ f, X)

∼=

∼=

(U, f∨ ⊗X)

From the diagram we can see that, (U ⊗ f,X) = 0 for every U ∈ T c, if and

only if (U, f∨⊗X) = 0 for every U ∈ T c, equivalently, f∨⊗X is a phantom map.

By [12, Proposition 2.10(a)] if f∨ ⊗X is a phantom map, then so is f∨ ⊗X ⊗ Y
for all Y ∈ T .

We have shown that if X ∈ D and Y ∈ T , then f∨⊗X ⊗Y is a phantom map

for every f ∈ J . In particular, as the tensor unit 1 ∈ T c, (1, f∨ ⊗X ⊗ Y ) = 0 for

every f ∈ J . But then (f,X ⊗ Y ) = 0 for every f ∈ J so X ⊗ Y ∈ D. �

Now let us give a proof of Theorem 5.1.8.
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Proof. (i) ↔ (ii): A definable subcategory D is T -tensor-closed if and only if it

is T c-tensor-closed by Lemma 5.1.11.

(iii) ↔ (iv): A Serre subcategory S ⊆ Coh(T ) is a tensor-ideal if and only if

it is closed under tensoring with representable functors by Lemma 5.1.5.

(v) ↔ (vi): A Serre subcategory C ⊆ mod-T c is a tensor-ideal if and only if

it is closed under tensoring with representable functors by [12, Lemma 2.12].

(iii)↔ (v): S ⊆ Coh(T ) is a Serre tensor-ideal if and only if C = δS ⊆ mod-T c

is a Serre tensor-ideal by Proposition 5.1.6).

(iv) ↔ (vii): A Serre subcategory S ⊆ Coh(T ) is closed under tensoring with

representable functors if and only if for all Ff ∈ S and all A ∈ T c, FA⊗f ∈ S. But

by Lemma 5.1.4 this happens if and only if J is T c-tensor-closed.

(ii) ↔ (iv): It remains to show that D is T c-tensor-closed if and only if S is

closed under tensoring with representable functors. Let Ff ∈ Coh(T ) and C ∈ T c.
Consider the following diagram, where the vertical maps are natural isomorphisms

induced by the adjunction between C ⊗− and C∨ ⊗−.

(C ⊗B,−) (C ⊗ A,−) (C,−)⊗ Ff 0

(B,C∨ ⊗−) (A,C∨ ⊗−) Ff ◦ (C∨ ⊗−) 0

∼= ∼= ∼=

(C ⊗ f,−)

(f, C∨ ⊗−)

So there exists a natural isomorphism (C,−)⊗Ff → Ff ◦ (C∨⊗−). Therefore

for all F ∈ S and C ∈ T c, (C,−)⊗ F ∈ S

⇐⇒ for all F ∈ S, C ∈ T c and D ∈ D, ((C,−)⊗ F )(D) = 0

⇐⇒ for all F ∈ S, C ∈ T c and D ∈ D, F (C∨ ⊗D) = 0

⇐⇒ for all C∨ ∈ T c and D ∈ D, C∨ ⊗D ∈ D.

Noting that (C∨)∨ ∼= C for all C ∈ T c (see [57, Remark 1.4]), we have that the

last statement is equivalent to ‘D is closed under tensoring with compact objects’.

�

Let us consider an example.
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Example 5.1.12. We consider some definable subcategories of kV4-Mod. Let φ

be the pp formula ∃y x = ay and ψ be the pp formula ∃y,∃z, x = ay ∧ x = bz.

Clearly, φ/ψ is a pp-pair. The definable subcategory defined by closure of φ/ψ is

generated by the following indecomposable pure-injectives

(i) M(∅),

(ii) M(n(b−1a)), n ∈ N,

(iii) M(n(b−1a)b−1), n ∈ Z≥0,

(iv) M(∞(b−1a)),

(v) M(∞(a−1b)),

(vi) N(∞(ab−1)),

(vii) M(ba−1, λ, i), i ∈ N ∪ {−∞,+∞}, λ ∈ kx,

(viii) M(ba−1, G).

Similarly, we can let φ′ be the pp formula ∃y x = by and ψ be as above. Then

φ′/ψ is a pp-pair. The definable subcategory defined by closure of φ′/ψ is generated

by the following indecomposable pure-injectives

(i) M(∅),

(ii) M(n(b−1a)), n ∈ N,

(iii) M(n(ab−1)a), n ∈ Z≥0,

(iv) M(∞(b−1a)),

(v) M(∞(a−1b)),

(vi) N(∞(ba−1)),

(vii) M(ba−1, λ, i), i ∈ N ∪ {−∞,+∞}, λ ∈ k∗,

(viii) M(ba−1, G).
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By using computer package ‘QPA’ (see [28]) in GAP (see [26]), one can see

that M(ab−1ab−1) ⊗M(b−1a) ∼= P ⊕ P ⊕ P ⊕M(ab−1), where P ∼= kV4 denotes

the four dimensional indecomposable projective module (see Appendix A.1). Thus

neither of these definable subcategories is T -tensor-closed.

Proposition 5.1.13. Suppose X is a collection of objects in T and D =
〈
X
〉def

is

the definable subcategory generated by X . Then D is T -tensor-closed if and only

if, for all X ∈ X and for all C ∈ T c, C ⊗X ∈ D.

Proof. If D is T -tensor-closed, X ∈ X and C ∈ T c then clearly C ⊗ X ∈ D.

Conversely, suppose that for all X ∈ X and for all C ∈ T c, C ⊗ X ∈ D. Let

J ⊆ morph(T c) denote the cohomological ideal associated to D. Recall that

f ∈ J if and only if (f,X) = 0 for all X ∈ X if and only if (f,X) = 0 for

all X ∈ D. We show that J is T c-tensor-closed. Suppose f ∈ J , C ∈ T c and

X ∈ X . Then (C ⊗ f,X) ∼= (f, C∨ ⊗ X) and (f, C∨ ⊗ X) = 0 since C∨ ∈ T c

meaning C∨⊗X ∈ D. Therefore C⊗f ∈ J and J is T c-tensor-closed. It remains

to apply Theorem 5.1.8. �

Corollary 5.1.14. If X is any T c-tensor-closed full subcategory of T , then
〈
X
〉def

is T -tensor-closed.

Example 5.1.15. Consider the definable subcategory D =
〈
M(a)

〉def
of kV4-Mod.

We claim that D is a T -tensor-closed definable subcategory.

Recall that the band module M(ba−1, λ, n) for λ ∈ k× and n ∈ N has generators

zi1 and zi2 for i = 1, ..., n and relations as follows.

azi1 = zi2, i = 1, ..., n.

azi2 = 0, i = 1, ..., n.

bzi1 =

λz1
2 i = 1

λzi2 + zi−1
2 i = 2, ..., n.

bzi2 = 0, i = 1, ..., n.

We show that M(a)⊗M(ba−1, λ, n) ∼= P (n). Denote the generators of M(a) by

x0 and x1 with ax0 = x1 and ax1 = bx0 = bx1 = 0.
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Set

yj1 = x0 ⊗ zj1 + x0 ⊗ zj2 + x1 ⊗ zj2,

yj2 = x0 ⊗ zj1 + x1 ⊗ zj1 + x1 ⊗ zj2,

yj3 =

x0 ⊗ z1
1 + x1 ⊗ z1

2 + (λ+ 1)x0 ⊗ z1
2 j = 1

x0 ⊗ zj1 + x1 ⊗ zj2 + (λ+ 1)x0 ⊗ zj2 + x0 ⊗ zj−1
2 j ≥ 2

and

yj4 =


x0 ⊗ z1

1 + x1 ⊗ z1
1 + λx0 ⊗ z1

2 + (λ+ 1)x1 ⊗ z1
2 j = 1

x0 ⊗ zj1 + x1 ⊗ zj1 + λx0 ⊗ zj2 + x0 ⊗ zj−1
2

+(λ+ 1)x1 ⊗ zj2 + x1 ⊗ zj−1
2 j ≥ 2,

for j = 1, ..., n.

Note that α(xi ⊗ zkj ) = (αxi ⊗ zkj ) + (xi ⊗ αzkj ) + (αxi ⊗ αzkj ) for α = a or

b. It is straightforward to check that ayj1 = ayj2 = yj1 + yj2, ayj3 = ayj4 = yj3 + yj4,

byj1 = byj3 = yj1 + yj3 and byj2 = byj4 = yj2 + yj4 for j = 1, ..., n. Recall that the

indecomposable projective P is given by P = kV4 with generators 1, x, y and xy,

where a acts as x+ 1 and b acts as y+ 1. Consequently, the generators satisfy the

following relations,

a1 = x+ 1 = x2 + x = ax

ay = xy + y = x2y + xy = axy

b1 = y + 1 = y2 + y = by and

bx = xy + x = xy2 + xy = yxy + xy = bxy.

Therefore 1 7→ yj1. x 7→ yj2, y 7→ yj3 and xy 7→ yj4 for j = 1, ..., n defines an

isomorphism between P and the submodule of M(a)⊗M(ba−1, λ, n) generated by

yj1, yj2, yj3 and yj4 for each j = 1, .., n. To show that the yji for i = 1, ..., 4 and

j = 1, ..., n generate M(a)⊗M(ba−1, λ, n), one can show that the generators xk⊗zml
for k = 1, 2, l = 1, 2 and m = 1, ..., n can be expressed as linear combinations of
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the yji . Indeed,

x0 ⊗ zj2 =

λ−1(y1
1 + y1

3) if j = 1

λ−1(yj1 + yj3) + λ−1x0 ⊗ zj−1
2 j ≥ 2,

can be seen inductively to be expressible as a linear combination of the yji . Simi-

larly, we have

x1 ⊗ zj2 =

λ−1(y1
2 + y1

4) + x0 ⊗ z1
2 j = 1

λ−1(yj2 + yj4) + x0 ⊗ zj2 + λ−1x0 ⊗ zj−1
2 + λ−1x1 ⊗ zj−1

2 j ≥ 2.

Given that the x0 ⊗ zj2 can be expressed as a linear combination of the yji so can

x1⊗ zj2 for j = 1, ..., n. In addition, x0⊗ zj1 = yj1 +x0⊗ zj2 +x1⊗ zj2 for j = 1, ..., n

so we can also express each x0 ⊗ zj1 as a linear combination of the yji . Finally an

expression for x1 ⊗ zj1 = yj2 + x0 ⊗ zj1 + x1 ⊗ zj2 in terms of the yji can be computed

using the expressions for x0 ⊗ zj1 and x1 ⊗ zj2.

Next we show that, for any n ∈ N, M(a)⊗M(n(b−1a)) ∼= P (n)⊕M(a). Denote

the generators of M(a) by x0 and x1 with the action of a sending x0 to x1. This

can be pictured as follows.

x0

x1

a

Denote the generators of M(n(b−1a)) by x0, x1, ..., x2n with the action of a and

b as pictured below.

x2n x2n−2 ... x2 x0

x2n−1 ... x1

aa bb
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For j = 0, ..., n− 1, set

zj1 =

x0 ⊗ x0 + x1 ⊗ x0 + x0 ⊗ x2n + x1 ⊗ x2n j = 0

x0 ⊗ x2j + x1 ⊗ x2j j ≥ 1

zj2 =

x0 ⊗ x0 + x0 ⊗ x1 + x0 ⊗ x2n j = 0

x0 ⊗ x2j + x0 ⊗ x2j+1 j ≥ 1

zj3 =

x0 ⊗ x0 + x1 ⊗ x0 + x0 ⊗ x2n−1 + x1 ⊗ x2n−1 + x0 ⊗ x2n + x1 ⊗ x2n j = 0

x0 ⊗ x2j + x1 ⊗ x2j + x0 ⊗ x2j−1 + x1 ⊗ x2j−1 j ≥ 1

zj4 =

x0 ⊗ x0 + x0 ⊗ x1 + x0 ⊗ x2n + x0 ⊗ x2n−1 j = 0

x0 ⊗ x2j + x0 ⊗ x2j+1 + x0 ⊗ x2j−1 j ≥ 1

y1 = x0 ⊗ x0

y2 = x0 ⊗ x1 + x1 ⊗ x0 + x1 ⊗ x1.

It can be checked that azj1 = azj2 = zj1 + zj2, azj3 = azj4 = zj3 + zj4, bzj1 = bzj3 =

zj1 + zj3 and bzj2 = bzj4 = zj2 + zj4 for j = 0, ..., n − 1 and therefore the submodule

generated by zj1, z
j
2, z

j
3 and zj4 is isomorphic to P for each j = 1, ..., n. In addition

ay1 = y2 and by1 = ay2 = by2 = 0 so the submodule generated by y1 and y2 is

isomorphic to M(a).

To show that the zji for i = 1, ..., 4 and j = 0, ..., n− 1 together with y1 and y2

generate M(a)⊗M(n(b−1a)) we show that each generator xk ⊗ xl for k = 0, 1 and

l = 0, ..., 2n can be written as a linear combination of the zji , y1 and y2 as follows.

x0 ⊗ x2n−1 = z0
2 + z0

4

x1 ⊗ x2j−1 = zj1 + zj2 + zj3 + zj4, for j = 1, ..., n− 1

x0 ⊗ x2j−1 = zj2 + zj4 for j = 1, ..., n− 1

x1 ⊗ x2n−1 = z0
1 + z0

2 + z0
3 + z0

4

x0 ⊗ x2j = zj2 + zj+1
2 + zj+1

4 for j = 1, ..., n− 1

x1 ⊗ x2j = zj1 + zj2 + zj+1
2 + zj+1

4 for j = 1, ..., n− 1
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x0 ⊗ x0 = y1

x1 ⊗ x0 = y2 + z1
1 + z1

3

x0 ⊗ x2n = y1 + z0
2 + z1

2 + z1
4

x1 ⊗ x2n = y2 + z0
1 + z0

2 + z1
1 + z1

2 + z1
3 + z1

4 .

Next we show that, for any n ∈ N, M(a)⊗M(n(ab−1)a) ∼= P (n)⊕M(a)⊕M(a).

Denote the generators of M(a) by x0 and x1 with the action of a sending x0 to x1.

This can be pictured as follows.

x0

x1

a

Denote the generators of M(n(ab−1)a) by x0, x1, ..., x2n+1 with the action of a

and b as pictured below.

x2n x2n−2 ... x2 x0

x2n+1 x2n−1 ... x1

aaa bb

For j = 1, ..., n, set

zj1 = x0 ⊗ x2j + x1 ⊗ x2j

zj2 = x0 ⊗ x2j + x0 ⊗ x2j+1

zj3 = x0 ⊗ x2j + x1 ⊗ x2j + x0 ⊗ x2j−1 + x1 ⊗ x2j−1

zj4 = x0 ⊗ x2j + x0 ⊗ x2j+1 + x0 ⊗ x2j−1
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y1 = x0 ⊗ x0

y2 = x0 ⊗ x1 + x1 ⊗ x0 + x1 ⊗ x1

y′1 = x0 ⊗ x2n+1

y′2 = x1 ⊗ x2n+1

It can be checked that azj1 = azj2 = zj1 + zj2, azj3 = azj4 = zj3 + zj4, bzj1 = bzj3 =

zj1 + zj3 and bzj2 = bzj4 = zj2 + zj4 for j = 0, ..., n − 1 and therefore the submodule

generated by zj1, z
j
2, z

j
3 and zj4 is isomorphic to P for each j = 0, ..., n−1. In addition

ay1 = y2 and by1 = ay2 = by2 = 0 and similarly for y′1 and y′2 so the 2-dimensional

submodules generated by y1 and y2 (respectively y′1 and y′2) are isomorphic to M(a).

To show that the zji for i = 1, ..., 4 and j = 0, ..., n − 1, y1,y′1, y2 and y′2

generate M(a)⊗M(n(ab−1)a) we show that each generator xk⊗xl for k = 0, 1 and

l = 0, ..., 2n+ 1 can be written as a linear combination of the zji , y1, y′1, y2 and y′2

as follows.

x0 ⊗ x0 = y1

x0 ⊗ x2j−1 = zj2 + zj4 j = 1, ..., n

x0 ⊗ x2n+1 = y′1

x0 ⊗ x2j =

z
j
2 + zj+1

2 + zj+1
4 for j = 1, ..., n− 1

zj2 + y′1 j = n

x1 ⊗ x2n+1 = y′2

x1 ⊗ x2j =

z
j
1 + zj2 + zj+1

2 + zj+1
4 j = 1, ..., n− 1

zj1 + zj2 + y′1 j = n

x1 ⊗ x2j−1 = zj1 + zj2 + zj3 + zj4, for j = 1, ..., n

x1 ⊗ x0 = y2 + z1
1 + z1

3 .

Next we show that, for any n ∈ N, M(a)⊗M(n(ab−1)) ∼= P (n)⊕M(a). Denote
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the generators of M(a) by x0 and x1 with the action of a sending x0 to x1. This

can be pictured as follows.

x0

x1

a

Denote the generators of M(n(ab−1)) by x0, x1, ..., x2n with the action of a and

b as pictured below.

x2n−1 ... x1

x2n x2n−2 ... x2 x0

aa bb

For j = 1, ..., n, set

zj1 = x0 ⊗ x2j−1 + x0 ⊗ x2j

zj2 = x0 ⊗ x2j−1 + x1 ⊗ x2j−1

zj3 = x0 ⊗ x2j−1 + x0 ⊗ x2j + x0 ⊗ x2j−2

zj4 = x0 ⊗ x2j−1 + x1 ⊗ x2j−1 + x0 ⊗ x2j−2 + x1 ⊗ x2j−2

y1 = x0 ⊗ x2n

y2 = x1 ⊗ x2n

It can be checked that azj1 = azj2 = zj1 + zj2, azj3 = azj4 = zj3 + zj4, bzj1 = bzj3 =

zj1 + zj3 and bzj2 = bzj4 = zj2 + zj4 for j = 1, ..., n and therefore the submodule

generated by zj1, z
j
2, z

j
3 and zj4 is isomorphic to P for each j = 1, ..., n. In addition

ay1 = y2 and by1 = ay2 = by2 = 0 so the 2-dimensional submodule generated by y1

and y2 is isomorphic to M(a).

To show that the zji for i = 1, ..., 4 and j = 1, ..., n, y1 and y2 generate M(a)⊗
M(n(ab−1)) we show that each generator xk ⊗ xl for k = 0, 1 and l = 0, ..., 2n can

be written as a linear combination of the zji , y1, and y2 as follows.
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x0 ⊗ x2n = y1

x1 ⊗ x2n = y2

x0 ⊗ x2j−2 = zj1 + zj3, for j = 1, ..., n

x1 ⊗ x2j−2 = zj1 + zj2 + zj3 + zj4, for j = 1, ..., n

x0 ⊗ x2j−1 =

z
j
1 + zj+1

1 + zj+1
3 for j = 1, ..., n− 1

zj1 + y1 j = n

x1 ⊗ x2j−1 =

z
j
1 + zj2 + zj+1

1 + zj+1
3 j = 1, ..., n− 1

zj1 + zj2 + y1 j = n

Finally we show that, for any n ∈ N, M(a)⊗M(n(b−1a)b−1) ∼= P (n+1). Denote

the generators of M(a) by x0 and x1 with the action of a as pictured below.

x0

x1

a

Denote the generators of M(n(b−1a)b−1) by x0, x1, ..., x2n+1 with the action of

a and b as pictured below.

x2n+1 x2n−1 ... x3 x1

x2n ... x2 x0

aa bbb
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For j = 1, ..., n+ 1, set

zj1 =

x0 ⊗ x2j−1 + x1 ⊗ x2j−1 j = 1, ..., n

x0 ⊗ x2j−1 + x1 ⊗ x2j−1 + x0 ⊗ x0 + x1 ⊗ x0 j = n+ 1

zj2 =

x0 ⊗ x2j−1 + x0 ⊗ x2j j = 1, ..., n

x0 ⊗ x2j−1 + x0 ⊗ x0 j = n+ 1

zj3 =


x0 ⊗ x2j−1 + x1 ⊗ x2j−1 + x0 ⊗ x2j−2 + x1 ⊗ x2j−2 j = 1, ..., n

x0 ⊗ x2j−1 + x1 ⊗ x2j−1 + x0 ⊗ x2j−2 + x1 ⊗ x2j−2

+x0 ⊗ x0 + x1 ⊗ x0 j = n+ 1

zj4 =

x0 ⊗ x2j−1 + x0 ⊗ x2j + x0 ⊗ x2j−2 j = 1, ..., n

x0 ⊗ x2j−1 + x0 ⊗ x0 + x0 ⊗ x2j−2 j = n+ 1

It can be checked that azj1 = azj2 = zj1 + zj2, azj3 = azj4 = zj3 + zj4, bzj1 = bzj3 =

zj1 + zj3 and bzj2 = bzj4 = zj2 + zj4 for j = 1, ..., n + 1 and therefore the submodule

generated by zj1, z
j
2, z

j
3 and zj4 is isomorphic to P for each j = 1, ..., n+ 1.

To show that M(a)⊗M(n(b−1a)b−1) is generated by the zji for i = 1, ..., 4 and

j = 1, ..., n, we show that each generator xk ⊗ xl for k = 0, 1 and l = 0, ..., 2n + 1

can be written as a linear combination of the zji as follows.

x0 ⊗ x2j−2 = zj2 + zj4, for j = 1, ..., n+ 1

x1 ⊗ x2j−2 = zj1 + zj2 + zj3 + zj4, for j = 1, ..., n+ 1

x0 ⊗ x2j−1 =

z
j
2 + zj+1

2 + zj+1
4 for j = 1, ..., n

zj2 + z1
2 + z1

4 j = n+ 1

x1 ⊗ x2j−1 =

z
j
1 + zj2 + zj+1

2 + zj+1
4 j = 1, ..., n

zj1 + zj2 + z1
1 + z1

2 + z1
3 + z1

4 j = n+ 1
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Thus we have shown that for every indecomposable finitely presented module

M in kV4-Mod, M(a) ⊗M is a direct sum of copies of M(a) and P . Therefore,

in kV4-Mod, M ⊗M(a) ∈
〈
M(a)

〉def
for every indecomposable compact object M .

Since the tensor product commutes with direct sums and every compact object is

a direct sum of indecomposable finitely presented modules, it follows that M ⊗
M(a) ∈

〈
M(a)

〉def
for all compact objects M . By Proposition 5.1.13, the definable

subcategory generated by M(a) is T c-tensor-closed. Finally applying Theorem 5.1.8

we conclude that
〈
M(a)

〉def
is T -tensor-closed.

Notation 5.1.16. Given a subcategory X of a finitely accessible category C, we

denote by lim−→ X the closure of X under direct limits.

We have established a one-to-one correspondence between the T -tensor-closed

definable subcategories of T , the Serre tensor-ideals of Coh(T ) and mod-T c and the

T c-tensor-closed cohomological ideals of morphisms of T c. In [12], Balmer, Krause

and Stevenson associate to a Serre tensor-ideal C of mod-T c a pure-injective E ∈ T
such that lim−→ C = ker(HE ⊗−) (see [12, Theorem 3.5]).

Let H : T → Mod-T c/lim−→ C denote the composition

T H−→ Mod-T c q−→ Mod-T c/lim−→ C.

Such a pure-injective, E, is constructed by considering the injective hull, I, of H1

in Mod-T c/lim−→ C, where 1 ∈ T is the tensor unit. Here the monoidal structure on

Mod-T c is induced by that of T c by Day convolution product (see Section 2.2) and

the monoidal structure on the localisation Mod-T c/lim−→ C extends that in Definition

3.3.9. The quotient functor q : Mod-T c → Mod-T c/lim−→ C admits a right adjoint, r,

which preserves injectives (see [12, Proposition 2.13(e)]) and the restricted Yoneda

functorH : T → Mod-T c identifies the pure-injective objects in T and the injective

objects in Mod-T c. Therefore there exists a unique up to unique isomorphism pure-

injective E ∈ T , such that HE is isomorphic in Mod-T c to r(I) that is the image

under the right adjoint r of the injective hull in Mod-T c/lim−→ C of H1.

We have the following ‘picture’.
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C ⊆
Serre
⊗−ideal

mod-T c S ⊆
Serre
⊗−ideal

Coh(T )

E ∈
pure−
injective

T D ⊆
T −tensor−closed

definable

T

([12], 3.1) Theorem 5.1.8

Proposition 5.1.6

Proposition 5.1.17. Let C ⊆ mod-T c be a Serre tensor-ideal and E ∈ T be the

associated pure-injective as in [12, Construction 3.1]. Suppose D is the definable

subcategory corresponding to the Serre subcategory S = δC ⊆ Coh(T ).

Then the cohomological ideal associated to the definable subcategory D ⊆ T is

given by J = {f ′ ∈ morph(T c) : E ⊗ f ′ = 0}.

Proof. Suppose f ′ : B → C in T c and E ⊗ f ′ = 0. Completing f ′ to a triangle in

T c and tensoring with E, we get an exact triangle

E ⊗ A E⊗f−−→ E ⊗B E⊗f ′−−−→ E ⊗ C E⊗f ′′−−−→ E ⊗ ΣC.

Since E ⊗ f ′ = 0 every morphism X → E ⊗ B factors via E ⊗ f . Since HE ⊗Gf

has presentation

(−, E ⊗ A)|T c
(−,E⊗f)−−−−−→ (−, E ⊗B)|T c → HE ⊗Gf → 0,

HE ⊗ Gf = 0 meaning Gf ∈ C as lim−→ C = ker(HE ⊗ −). Therefore, by Lemma

5.1.4, f ′ ∈ J .

Conversely, suppose g′ : V → W in T c is in the cohomological ideal associated

to D. Complete g′ to a triangle and rotate to obtain a triangle of form U
g−→ V

g′−→
W

g′′−→ ΣU . By Lemma 5.1.4, Gg ∈ C. Therefore, HE ⊗ Gg = 0. Note that we

have exact sequence

(−, E ⊗ U)|T c
(−,E⊗g)−−−−−→ (−, E ⊗ V )|T c → HE ⊗Gg → 0.
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Considering the exact triangle, E ⊗ U E⊗g−−→ E ⊗ V E⊗g′−−−→ E ⊗W E⊗g′′−−−→ E ⊗ ΣU ,

we see that HE ⊗ Gg = 0 implies that E ⊗ g′ is phantom. But by [12, Corollary

3.6], E ⊗ g′ is phantom if and only if E ⊗ g′ = 0, as g′ ∈ morph(T c). �

Remark 5.1.18. In other words, Proposition 5.1.17 tells us that for any T -tensor-

closed definable subcategory D ⊆ T there is a pure-injective E such that D is

defined by a collection of pp formulas φf of the form ∃yB, xA = yBf where f

ranges over the morphisms in T c such that E ⊗ f = 0.

Proposition 5.1.19. Suppose we have a Serre tensor-ideal, C ⊆ mod-T c, and

corresponding pure-injective E ∈ T as in [12, Construction 3.1]. Set S = δC ⊆
Coh(T ) and let D ⊆ T be the corresponding T -tensor-closed definable subcategory

as in Theorem 5.1.8. Then E ∈ D.

Proof. By Proposition 5.1.17, E ∈ D if and only if, (f, E) = 0 for all f ∈
morph(T c) such that E ⊗ f = 0. Suppose E ⊗ f = 0 where f : A → B is

a morphism in T c and g : B → E. Then HE⊗f = 0 so HE⊗(g◦f)) = 0. By

[12, Corollary 3.6] HE⊗(g◦f)) = 0 implies the image of Hg◦f under the quotient

map Mod-T c → Mod-T c/lim−→ C is zero. Therefore since E is pure-injective and

HE /∈ lim−→ C meaning E is in the image of the right adjoint to the quotient functor

Mod-T c → Mod-T c/lim−→ C, [12, Corollary 2.18(c)] implies that g ◦ f = 0. �

5.2 Definable tensor-ideals

Recall that the distinction between a T -tensor-closed definable subcategory and a

definable tensor-ideal is that a definable tensor-ideal is a triangulated subcategory

(Definition 5.1.7). In this section we consider the role of definable tensor-ideals in

a rigidly-compactly generated tensor triangulated category T .

Notation 5.2.1. For a full subcategory X ⊆ T and I ⊆ Z, we denote by ⊥IX the

full subcategory with objects {Z ∈ T : (Z,ΣiX) = 0,∀X ∈ X , i ∈ I}. We write

just ⊥X for the case I = {0}.
Similarly we denote by X⊥I the full subcategory of T with objects {Z ∈ T :

(X,ΣiZ) = 0,∀X ∈ X , i ∈ I}. We write X⊥ for the case I = {0}.
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First we show that D ⊆ T is a definable tensor-ideal if and only if ⊥D is a

smashing tensor-ideal of T . The correspondence between triangulated definable

subcategories and smashing subcategories is already known (e.g. see [37] and [40,

Remark 6.4]). However, for completeness we will give details of the proof before

establishing a tensor version.

Definition 5.2.2. A full triangulated subcategory B ⊆ T is said to be smashing

if the inclusion functor B ↪→ T has a right adjoint which preserves coproducts.

Definition 5.2.3. Full subcategories U ,V ⊆ T form a torsion pair if the follow-

ing hold:

(i) T (U ,V) = 0;

(ii) U and V are closed under direct summands;

(iii) For every object X ∈ T there is an exact triangle

U → X → V → ΣU

such that U ∈ U and V ∈ V .

A torsion pair, (U ,V) is said to be a t-structure (respectively co-t-structure)

if ΣU ⊆ U (respectively Σ−1U ⊆ U). Given a t-structure (U ,V), U is called the

aisle of the t-structure and V is called the coaisle. The heart of the t-structure

(U ,V) is given by Ht = U ∩ ΣV .

We will show that smashing subcategories B and triangulated definable sub-

categories D lie in torsion pairs (B,D). The following equivalent characterisation

of a smashing subcategory will be useful.

Proposition 5.2.4. (e.g. [46, Theorem 4.4.3]) Let B ⊆ T be a full triangulated

subcategory. Then B is a smashing subcategory if and only if B is the aisle of a

t-structure (B,B⊥) such that B⊥ is closed under coproducts.

Definition 5.2.5. We say that a full subcategory X ⊆ T is suspended (re-

spectively cosuspended) if it is closed under direct summands, extensions and

positive (respectively negative) shift.
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We say that a full subcategory X ⊆ T is precovering if for every Y ∈ T there

exists an X ∈ X and a morphism f : X → Y such that, given any morphism

g : X ′ → Y with X ′ ∈ X , there exists some h : X ′ → X such that g = h ◦ f .

Preenveloping subcategories are defined dually.

Proposition 5.2.6. ([44, Proposition 1.4] and [5, Example 2.4(3)]) Let V be a

suspended and precovering (respectively cosuspended and preenveloping) subcate-

gory of T . The inclusion functor V ↪→ T has a right (respectively left) adjoint.

Proof. The proof in the suspended case follows the argument of [44, Proposition

1.4]. The cosuspended case is dual. For completeness we give the proof of the

cosuspended case in full. Suppose X ∈ T . To find a left adjoint λ : T → V
we need to find a universal morphism εX : X → λ(X) with λ(X) ∈ V . As V
is preenveloping, we have a morphism f : X → V with V ∈ V such that every

morphism f ′ : X → V ′ with V ′ ∈ V factors (not necessarily uniquely) through

f . Complete f to an exact triangle, say Σ−1U → X
f−→ V

α−→ U and choose a V-

preenvelope of U , say β : U → W , with W ∈ V . We have the following morphism

of triangles.

Σ−1U X V U

Σ−1W Z V W

f α

g β ◦ α

Σ−1β k = βh

As V is cosuspended Σ−1W and Z are objects of V and since f : X → V is a

V-preenvelope, the morphism k : X → Z factors (not necessarily uniquely) via f ,

say k = h ◦ f . Set e = g ◦ h : V → V and note that e ◦ f = f . We will show that

e is an idempotent. First we prove the following claim:

Claim: If l : V → V ′, with V ′ ∈ V , satisfies l ◦ f = 0, then l ◦ e = 0.

Indeed, since l ◦ f = 0, l factors via α say l = l′ ◦ α and since β : U → W is a

V-preenvelope and V ′ ∈ V , l′ factors via β, say l′ = l′′ ◦β. So l = l′′ ◦ (β ◦α) which

implies that l ◦ g = 0. In particular, l ◦ e = l ◦ g ◦ h = 0 and we have proven the

claim.
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Now since e◦f = e, (1−e)◦f = 0 and (1−e) : V → V where V ∈ V , so applying

the claim we get (1−e)◦e = 0 or equivalently e2 = e. Since idempotents in T split

(as T has coproducts- see [43, see Proposition 1.6.8]) we can write e = t ◦ s where

s : V → V̂ , t : V̂ → V and s ◦ t = idV̂ . Since V is closed under direct summands,

V̂ ∈ V . We set V̂ = λ(X) and claim that εX = s◦f : X → λ(X) is universal among

morphisms from X to an object in V . Indeed, if f ′ : X → V ′ where V ′ ∈ V then

f ′ = f ′′◦f as f is a V-preenvelope. But then f ′ = f ′′◦e◦f = f ′′◦t◦s◦f = f ′′◦t◦εX .

Now if there exists some l : λ(X) → V ′ such that f ′ = l ◦ εX = l ◦ s ◦ f then

(f ′′ ◦ t − l) ◦ s ◦ f = 0. Therefore, by the claim (f ′′ ◦ t − l) ◦ s ◦ e = 0 and since

s◦ e = s we get (f ′′ ◦ t− l)◦ s = 0. Finally precomposing with t gives f ′′ ◦ t− l = 0

and the factorisation is unique, as required. �

Corollary 5.2.7. [33, Definition and Proposition 1.1] Let V be a suspended and

precovering (respectively cosuspended and preenveloping) subcategory of T . Then

(V ,V⊥) (respectively (⊥V ,V)) forms a t-structure.

Proof. See [33, Definition and Proposition 1.1] for the suspended case. The

cosuspended case is dual. For completeness we sketch the proof of the cosuspended

case.

We need to show that for every object X ∈ T , there exists a distinguished

triangle

X ′ → X → X ′′ → ΣX ′

such that X ′ ∈ ⊥V and X ′′ ∈ V . As V is cosuspended, the inclusion V ↪→ T
has a left adjoint by Proposition 5.2.6. Let us denote it by λ : T → V , so

V(λ(X), Y ) ∼= T (X, Y ) for all X ∈ T and Y ∈ V . Let X be an object of T and

εX : X → λ(X) be the map corresponding to idλ(X) under the above isomorphism.

Complete εX to an exact triangle in T ,

Z
µ−→ X

εX−→ λ(X)
γ−→ ΣZ.

We want to show that Z ∈ ⊥V . Suppose h : Z → V ′ is a morphism in T , where

V ′ ∈ V . Consider the following morphism of triangles.
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Σ−1λ(X) Z X λ(X)

Σ−1λ(X) V ′ Y λ(X)

Σ−1γ δ εX

h ◦ Σ−1γ k

= h l =s

Since V is closed under extensions, Y ∈ V and therefore, as shown on the

diagram, the morphism l factors uniquely through εX . Notice that k ◦ s ◦ εX =

k ◦ l = εX . Therefore k ◦ s = idλ(X) by the universal property of the left adjoint λ.

Therefore h ◦Σ−1γ = h ◦Σ−1(γ ◦ k ◦ s) = 0 and h factors through δ, say h = h′ ◦ δ.
But then since V ′ ∈ V , h′ : X → V ′ factors via εX , say h′ = h′′ ◦ εX . Putting this

together we get h = h′′ ◦ εX ◦ δ = 0 and Z ∈ ⊥V , as required. �

Next we recall some results from [37] which relate to triangulated definable

subcategories. We start with some definitions.

Definition 5.2.8. [37, Corollary 12.6] An ideal J ⊆ morph(T c) is said to be

exact if the following three conditions hold:

(i) J is shift-closed,

(ii) J is cohomological,

(iii) J is idempotent i.e. for every f ∈ J there exist morphisms g, h ∈ J such

that f = h ◦ g.

Next we characterise the Serre subcategories of mod-T c which correspond to

exact ideals.

Definition 5.2.9. A Serre subcategory C ⊆ mod-T c is said to be perfect if the

right adjoint to the quotient functor Mod-T c → Mod-T c/lim−→ C is an exact functor.

A Serre subcategory C ⊆ mod-T c is said to be shift-closed if Gf ∈ C if and

only if GΣf ∈ C.

Theorem 5.2.10. [37] There is a bijective correspondence between the following:
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(i) the exact ideals J ⊆ morph(T c),

(ii) the smashing subcategories B ⊆ T ,

(iii) the triangulated definable subcategories D ⊆ T ,

(iv) the shift-closed perfect Serre subcategories C ⊆ mod-T c.

Here the bijection between (ii) and (iii) is given by mapping a smashing subcategory

B to the definable subcategory D = B⊥, and a definable subcategory D to the

smashing subcategory B = ⊥D.

Proof. (i) ↔ (ii): This is [37, Corollary 12.5]. The correspondence is given by

J 7→ {X ∈ T : every morphism C → X with C ∈ T c factors via some f ∈ J }

with inverse

B 7→ {f ∈ morph(T c) : f factors via some X ∈ B}.

(i) ↔ (iv): This is [37, Proposition 8.8]. The correspondence is given by

J 7→ {M ∈ mod-T c : M ∼= im Hf , for some f ∈ J } ⊆ mod-T c

with inverse

C 7→ {f ∈ morph(T c) : im Hf ∈ C}.

(ii) ↔ (iii): Suppose B is a smashing subcategory of T . By [37, Lemma

12.4], B⊥ is a triangulated definable subcategory. Conversely, if D is a definable

and triangulated subcategory of T then (⊥D,D) is a torsion pair by Corollary

5.2.7. Since D is closed under coproducts, ⊥D is a smashing subcategory by the

well known alternative characterisation given in Proposition 5.2.4. The fact that

these assignments give inverse bijections is a direct consequence of (⊥D,D) being

a t-structure. �

Remark 5.2.11. Let δ : Coh(T )
∼−→ (mod-T c)op be the duality defined in Propo-

sition 5.1.2. By Lemma 5.1.4, the correspondence between (i) and (iv) is such
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that the Serre subcategory C = δS where the S ⊆ Coh(T ) corresponds to J as in

Theorem 2.5.11. In addition, [35, Theorem 4.2] tells us that the exact ideal asso-

ciated as in (i) ↔ (ii) to a smashing subcategory B is equal to the cohomological

ideal associated as in Theorem 2.5.11 to the triangulated definable subcategory

D = B⊥. In this sense the correspondences in Theorem 5.2.10 are a restriction

of the correspondences given in Krause’s Fundamental Correspondence (Theorem

2.5.11) to triangulated definable subcategories.

The next result describes the relationship between a smashing subcategory B
and the perfect Serre subcategory C ⊆ mod-T c associated by Theorem 5.2.10.

Proposition 5.2.12. [35, Lemma 3.9] Let B be a smashing subcategory of T and

let C be the corresponding perfect Serre subcategory from Theorem 5.2.10.

Then X ∈ B if and only if HX ∈ lim−→ C.

Now let us consider what happens when D is not just triangulated and definable

but a definable tensor-ideal.

Proposition 5.2.13. There is a bijective correspondence between the following.

(i) The smashing tensor-ideals B ⊆ T .

(ii) The definable tensor-ideals D ⊆ T .

The bijection is given by B 7→ B⊥ and D 7→ ⊥D. In particular, a smashing tensor-

ideal B and its associated triangulated definable subcategory D fit into a torsion

pair of the form (B,D).

Proof. Let (B,D) be a torsion pair with B a smashing subcategory andD definable

and triangulated. D is T c-tensor-closed if and only if for every Y ∈ B, X ∈ D
and C ∈ T c, (Y,C ⊗X) = 0 if and only if for every Y ∈ B, X ∈ D and C ∈ T c,
(C∨ ⊗ Y,X) = 0 if and only if B is T c-tensor-closed. By Theorem 5.1.8, D is

T -tensor-closed (and consequently a definable tensor-ideal) if and only if it is T c-
tensor-closed. It remains to show that B is T c-tensor-closed if and only if it is a

smashing tensor-ideal.

If B is a smashing tensor-ideal it is T c-tensor-closed. Conversely, suppose

that B is T c-tensor-closed and consider the family of coproduct preserving exact
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functors {X ⊗ − : T → T : X ∈ B}. Applying [56, Lemma 3.8] with M = B
we get that L = {X ∈ T : Y ⊗ X ∈ B, ∀Y ∈ B} is a localising subcategory

of T . But since B is T c-tensor-closed, T c ⊆ L meaning L = T . Therefore B is

T -tensor-closed and hence a smashing tensor-ideal, as required. �

In summary, combining Theorem 5.2.10, with Theorem 5.1.8 and Proposition

5.2.13, we have the following triangulated version of Theorem 5.1.8.

Theorem 5.2.14. Let T be a rigidly-compactly generated tensor triangulated cat-

egory, D be a definable subcategory of T , S be the corresponding Serre subcategory

of Coh(T ), C = δS be the Serre subcategory of mod-T c given by applying δ to every

functor in S and J be the corresponding cohomological ideal of morphisms in T c

(see 2.5.11). The following are equivalent:

(i) D is a tensor-ideal, that is T -tensor-closed and triangulated;

(ii) C is a perfect Serre tensor-ideal;

(iii) J is exact and T c-tensor-closed.

In addition, the above equivalent conditions hold if and only if B = ⊥D is a

smashing tensor-ideal of T .

Let us denote the lattice of definable tensor-ideals of T by (D⊗∆(T ),⊆) and

the lattice of smashing tensor-ideals of T by (S⊗(T ),⊆).

Corollary 5.2.15. Let T be a rigidly-compactly generated tensor triangulated cat-

egory. There is a lattice isomorphism (S⊗(T ),⊆) ∼= (D⊗∆(T ),⊆)op.

Proof. Note that if D ⊆ D′ and X ∈ ⊥D′ then for all Y ∈ D, (X, Y ) = 0 so

X ∈ ⊥D. Hence ⊥D′ ⊆ ⊥D. Therefore, the one-to-one correspondence between

definable tensor-ideals and smashing tensor-ideals is inclusion-reversing. �

In the remainder of this section we consider the role of localisation functors.

Definition 5.2.16. [38, Definition 2.4] A triangulated functor (L, α) with L :

T → T and α : L ◦Σ
∼−→ Σ ◦L, is a localisation functor if there exists a natural
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transformation η : IdT → L such that ΣηX = αX ◦ ηΣX , Lη : L→ L2 is invertible

and Lη = ηL. Colocalisation functors are defined dually.

A localisation functor L is said to be a smashing localisation if L preserves

coproducts.

We have the following characterisation of a smashing subcategory.

Proposition 5.2.17. (e.g. [46, Proposition 4.4.3]) A full triangulated subcategory

B ⊆ T is smashing if and only if it is the kernel of a smashing localisation functor

L : T → T .

If B ⊆ T is a smashing subcategory, we can take L to be the composition

T λ−→ B⊥ i
↪−→ T , where i is the inclusion functor and λ is left adjoint to i.

Proposition 5.2.18. (e.g. [10, Theorem 2.6]) To every smashing localisation

functor L there corresponds a colocalisation functor Γ such that, for every X ∈ T
there exists a distinguished triangle, Γ(X)→ X → L(X)→ ΣΓ(X). In this case,

B = ker(L) = im(Γ), B⊥ = im(L) = ker(Γ) and B = ⊥(B⊥).

So by Theorem 5.2.10, any triangulated definable subcategory, D, can be writ-

ten as B⊥ = im(L) = ker(Γ) for some smashing subcategory B with corresponding

smashing localisation and colocalisation functors L and Γ respectively.

Next we prove a result from [31] which says that if the kernel of a localisation

functor L is a tensor-ideal, then L is smashing if and only if L ∼= L(1)⊗−. First

we prove the following two lemmas.

Lemma 5.2.19. Let (L : T → T , η : IdT → L) be a localisation functor. Then

for all X, Y ∈ T , (ηX , L(Y )) : (L(X), L(Y ))
∼−→ (X,L(Y )) is an isomorphism.

Proof. We claim that the map θ : (X,L(Y )) → (L(X), L(Y )) which takes a

morphism f : X → L(Y ) to η−1
L(X) ◦ L(f) : L(X) → L(L(Y )) → L(Y ), defines

an inverse for (ηX , L(Y )). Indeed, since η is a natural transformation, for every

g : L(X) → L(Y ), we have ηL(Y ) ◦ g = L(g) ◦ ηL(X). But note that ηL(Y ) =

(ηL)(Y ) = (Lη)(Y ) is invertible so

g = η−1
L(Y )◦L(g)◦ηL(X) = η−1

L(Y )◦L(g)◦L(ηX) = η−1
L(Y )◦L(g◦ηX) = (θ◦(ηX , L(Y )))(g).
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Similarly, for any f : X → L(Y ) we have that ηL(Y ) ◦ f = L(f) ◦ ηX , so

f = η−1
L(Y ) ◦ L(f) ◦ ηX = (ηX , L(Y ))(η−1

L(Y ) ◦ L(F )) = ((ηX , L(Y )) ◦ θ)(f),

as required. �

Lemma 5.2.20. [31, Lemma 3.1.6 (b)] Let (L : T → T , η : IdT → L) be a

localisation functor such that for every X, Y ∈ T , if L(X) = 0 then L(X⊗Y ) = 0

and suppose C ∈ T c. Then ηL(1)⊗C : L(1)⊗C → L(L(1)⊗C) is an isomorphism.

Proof. First we show that if L(Z) = 0 then (Z,L(1) ⊗ C) = 0 for any Z ∈ T .

Suppose that L(Z) = 0. Then (Z,L(1)⊗C) ∼= (C∨⊗Z,L(1)) ∼= (L(C∨⊗Z), L(1))

by Lemma 5.2.19. But L(Z) = 0 so L(C∨ ⊗ Z) = 0 by the assumption on L.

Therefore (Z,L(1)⊗ C) = 0, as required.

Let

Γ(L(1)⊗ C)
γ−→ L(1)⊗ C

ηL(1)⊗C−−−−→ L(L(1)⊗ C)→ ΣΓ(L(1)⊗ C)

be the exact triangle as in Proposition 5.2.18. As L(Γ(L(1)⊗ C)) = 0, (Γ(L(1)⊗
C), L(1) ⊗ C) = 0 meaning γ : Γ(L(1) ⊗ C) → L(1) ⊗ C is the zero morphism.

Consequently, there exists some µ : L(L(1)⊗C)→ L(1)⊗C such that idL(1)⊗C =

µ ◦ ηL(1)⊗C . Applying L to this equation we get idL(L(1)⊗C) = L(µ) ◦ L(ηL(1)⊗C) =

L(µ)◦ηL(L(1)⊗C). Since η is a natural transformation, L(µ)◦ηL(L(1)⊗C) = ηL(1)⊗C ◦µ.

So µ is inverse to ηL(1)⊗C as required. �

Proposition 5.2.21. [31, Definition 3.3.2] Let L : T → T be a localisation

functor such that for every X, Y ∈ T , if L(X) = 0 then L(X ⊗ Y ) = 0. Then the

following are equivalent:

• There exists a natural isomorphism β : L(1)⊗− → L;

• L preserves coproducts.
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Proof. Suppose there exists a natural isomorphism β : L(1)⊗− → L. Then

L(
∐
i∈I

Xi) ∼= L(1)⊗ (
∐
i∈I

Xi) ∼=
∐
i∈I

(L(1)⊗Xi) ∼=
∐
i∈I

L(Xi).

Conversely, suppose L preserves coproducts. For X ∈ T , consider the distin-

guished triangle L(Γ(1)⊗X)
L(γX)−−−→ L(X)

L(λX)−−−→ L(L(1)⊗X)→ ΣL(Γ(1)⊗X). By

[10, Theorem 2.6] L(Γ(1)) = 0 so by assumption L(Γ(1)⊗X) = 0. Hence L(λX) :

L(X)
∼−→ L(L(1)⊗X) is an isomorphism. Define the map βX : L(1)⊗X → L(X)

by

L(1)⊗X
ηL(1)⊗X−−−−→ L(L(1)⊗X)

L(λX)−1

−−−−−→ L(X).

Let A ⊆ T denote the full subcategory of T given by those X ∈ T such that βX

is an isomorphism. We show that T c ⊆ A and that A is a localising subcategory

of T , therefore A = T .

If βX : L(1) ⊗X → L(X) is an isomorphism then so is ηL(1)⊗X : L(1) ⊗X →
L(L(1)⊗X). But then Σ(ηL(1)⊗X) is also an isomorphism, so since Σ(ηL(1)⊗X) '
ηΣ(L(1)⊗X) ' ηL(1)⊗ΣX , we have βΣX is an isomorphism and therefore ΣX ∈ A.

Suppose X → Y → Z → ΣX is a distinguished triangle in T and X, Z ∈ A.

Then we have the following commutative diagram where the rows are distinguished

triangles.

L(1)⊗X L(1)⊗ Y L(1)⊗ Z L(1)⊗ ΣX

L(X) L(Y ) L(Z) L(ΣX)

αX αY αZ αΣX

Since βX and βZ are isomorphisms, so is βY . Therefore Y ∈ A and A is

triangulated.

Let us check that A is closed under arbitrary coproducts. Suppose {Xi}i∈I ⊆ A
and consider

β∐
iXi

= L(λ∐
iXi

)−1 ◦ ηL(1)⊗
∐
iXi

: L(1)⊗
∐
i

Xi → L(
∐
i

Xi).
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We need to show that ηL(1)⊗
∐
iXi

is an isomorphism. Since for each j ∈ I, Xj ∈ A,

we have that for each j ∈ I, ηL(1)⊗Xj is an isomorphism. Therefore we have maps,

L(L(1) ⊗ Xj)
η−1
L(1)⊗Xj−−−−−→ L(1) ⊗ Xj

iL(1)⊗Xj−−−−−→
∐

i(L(1) ⊗ Xi) and by the universal

property of coproducts there exists a unique map µ :
∐

i L(L(1)⊗Xi)→
∐

i(L(1)⊗
Xi) making the following diagram commute.

L(L(1)⊗Xj)

L(1)⊗Xj

∐
i(L(1)⊗Xi)

∐
i L(L(1)⊗Xi)

η−1
L(1)⊗Xj

iL(1)⊗Xj

µ

iL(L(1)⊗Xj)

Now, since L(1) ⊗ − and L preserve coproducts we have isomorphisms γ :∐
i L(L(1)⊗Xi)→ L(L(1)⊗

∐
iXi) and ξ :

∐
i(L(1)⊗Xi)→ L(1)⊗

∐
iXi such

that

γ ◦ iL(L(1)⊗Xj) = L(L(1)⊗ iXj)

and

ξ ◦ iL(1)⊗Xj = L(1)⊗ iXj .

We will show that the composition

L(L(1)⊗
∐
i

Xi)
β−1

−−→
∐
i

L(L(1)⊗Xi)
µ−→
∐
i

(L(1)⊗Xi)
δ−→ (L(1)⊗

∐
i

Xi)

is inverse to ηL(1)⊗
∐
iXi

. We have the following commutative diagram.
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∐
i(L(1)⊗Xi)

∐
i L(L(1)⊗Xi)

L(1)⊗Xj L(L(1)⊗Xj)

(L(1)⊗
∐

iXi) L(L(1)⊗
∐

iXi)

η−1
L(1)⊗Xj

ηL(1)⊗Xj

µ

ηL(1)⊗
∐
iXi

iL(L(1)⊗Xj)iL(1)⊗Xj

L(L(1)⊗ iXj)L(1)⊗ iXj

ξ γ

It can then easily be checked, through some diagram chasing, that for all j ∈ I,

γ−1 ◦ ηL(1)⊗
∐
iXi
◦ ξ ◦ µ ◦ iL(L(1)⊗Xj) = iL(L(1)⊗Xj)

and

µ ◦ γ−1 ◦ ηL(1)⊗
∐
iXi
◦ ξ ◦ iL(1)⊗Xj = iL(1)⊗Xj .

Therefore γ−1 ◦ ηL(1)⊗
∐
iXi
◦ ξ ◦ µ = id∐

i L(L(1)⊗Xi) and µ ◦ γ−1 ◦ ηL(1)⊗
∐
iXi
◦ ξ =

id∐
i(L(1)⊗Xi). Consequently, ξ◦µ◦γ−1 is the inverse of ηL(1)⊗

∐
iXi

. Hence
∐

iXi ∈ A
as required.

Finally, note that by Lemma 5.2.20, ηL(1)⊗C : L(1) ⊗ C → L(L(1) ⊗ C) is an

isomorphism for all C ∈ T c, so T c ⊆ A. �

In summary we have seen that, if D is a definable tensor-ideal, then D is the

coaisle of a torsion pair (B,D) where B is a smashing tensor-ideal (Proposition

5.2.13). Furthermore, the inclusion functor D i
↪−→ T has a left adjoint, λ : T → D

and L = i ◦ λ defines a smashing localisation functor. Therefore L(1) = λ(1),

D = im(λ(1) ⊗ −) and B = ker(λ(1) ⊗ −). Set C = δS where S ⊆ Coh(T ) is

the Serre subcategory associated to D as in Theorem 2.5.11. Then by Proposition

5.2.12, X ∈ B if and only if HX ∈ lim−→ C. Recall that H : T → Mod-T c/lim−→ C is

given by the composition T H−→ Mod-T c q−→ Mod-T c/lim−→ C. Let H1 be the image of

the tensor unit in T under H and suppose that the injective hull of H1 is given by

HE for a pure-injective E ∈ T . By [12, Theorem 3.5] (see the end of Section 5.1)

lim−→ C = ker(HE ⊗ −) and therefore B = ker(E ⊗ −). The following proposition



5.2. DEFINABLE TENSOR-IDEALS 133

shows that E is isomorphic to the pure-injective hull of λ(1).

Proposition 5.2.22. Suppose D is T -tensor-closed and definable and C ⊆ mod-T c

is the corresponding Serre subcategory. If the inclusion D ↪→ T has a left adjoint,

λ : T → D, then the (unique up to unique isomorphism) pure-injective E ∈ T
constructed in [12, Construction 3.1] is isomorphic to the pure-injective hull of

λ(1).

Proof. Let ηλ : λ(1) → Eλ denote the pure-injective hull of λ(1) in T and note

that λ(1) ∈ D implies Eλ ∈ D. Let H : T → Mod-T c/lim−→ C denote H composed

with the quotient map q : Mod-T c → Mod-T c/lim−→ C and let Hη : H1 → HE

be the injective hull of H1 in the quotient category Mod-T c/lim−→ C as defined in

Construction 3.1 of [12] (see Section 5.1). Let ε1 : 1 → λ(1) be the morphism in

T corresponding to idλ(1) under the adjunction isomorphism

D(λ(1), λ(1)) ∼= T (1, λ(1)).

Since Hη : H1 → HE is a monomorphism in Mod-T c/lim−→ C and HEλ , the

image of Eλ under H, is injective, the map Hηλ ◦Hε1 factors through Hη.

H1 HE

HEλ

Hη

Hηλ ◦Hε1 Hk

Similarly, Hηλ is a monomorphism in Mod-T c/lim−→ C and HE is injective so any

map Hλ(1) → HE factors via Hηλ . By Proposition 5.1.19, we have that E ∈ D,

so we have a morphism ξ : λ(1) → E corresponding to η under the adjunction

isomorphism T (1, E) ∼= D(λ(1), E). By naturality of the adjunction we have

η = ξ ◦ ε1. By the above observation we have a morphisms k′ : Eλ → E such that

the following diagram commutes.



134 CHAPTER 5. DEFINABLE SUBCATEGORIES OF TT-CATEGORIES

Hλ(1) HEλ

HE

Hηλ

Hξ Hk′

By [12, Corollary 2.18(c)] Hk and Hk′ correspond to maps k and k′ in T . Now

since,

Hk′ ◦Hk ◦Hη = Hk′ ◦Hηλ ◦Hε1 = Hξ ◦Hε1 = Hη,

and Hη is an injective hull, we have that Hk′ ◦Hk is an automorphism. Applying

[12, Corollary 2.18(c)] again, we get that k′◦k an automorphism. In a similar vein,

Hk′◦ηλ−ξ = Hk′ ◦Hηλ −Hξ = 0 and since the target of this map, HE is injective,

k′ ◦ ηλ = ξ. By an identical argument, using that HEλ is injective, k ◦ η = ηλ ◦ ε1.

Therefore,

k ◦ k′ ◦ ηλ ◦ ε1 = k ◦ ξ ◦ ε1 = k ◦ η = ηλ ◦ ε1.

Consider the following commutative diagram in Ab given by the naturality of

the adjunction between the inclusion D ↪→ T and λ.

D(λ(1), λ(1)) T (1, λ(1))

D(λ(1), Z) T (1, Z)

∼=

(λ(1), f) (1, f)

∼=

Given a morphism f : λ(1)→ Z, f◦ε1 is the image of the identity on λ(1) under

the top horizontal isomorphism followed by (1, f). But then f ◦ ε1 is isomorphic

under the bottom horizontal isomorphism to f . So, if f ◦ε1 = 0 then f = 0. Hence

ε1 is a monomorphism and since k◦k′ ◦ηλ ◦ε1 = ηλ ◦ε1, we have k◦k′ ◦ηλ = ηλ. As

ηλ is a pure-injective hull, k ◦ k′ is an automorphism. Suppose α is the two-sided

inverse of k′ ◦ k and β is the two sided inverse of k ◦ k′. Then,

α ◦ k′ = α ◦ k′ ◦ k ◦ k′ ◦ β = k′ ◦ β,
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is inverse to k on both sides. Hence k is an isomorphism and E ∼= Eλ as required.

�



Chapter 6

Topologies associated to tensor

triangulated categories

In this chapter we explore various topologies that can be associated to a rigidly-

compactly generated tensor triangulated category T . Fix a rigidly-compactly gen-

erated tensor triangulated category T .

6.1 The Ziegler spectrum

In this section we define five new Ziegler-type topologies.

6.1.1 Shift-closed Ziegler topology

In this section we will define the positive shift-closed Ziegler topology, negative

shift-closed Ziegler topology and shift-closed Ziegler topology on pinjT and show

that the frame of open subsets of the shift-closed Ziegler topology is isomorphic

to the frame of open subsets of a quotient topology of the Ziegler spectrum.

Lemma 6.1.1. Let D be a definable subcategory of T with associated cohomological

ideal J and i ∈ Z. Then ΣiD := {ΣiX : X ∈ D} is also definable in T with

associated cohomological ideal ΣiJ .

136
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Proof. Let J ⊆ morph(T c) denote the cohomological ideal corresponding to D
and set ΣiJ := {Σif : f ∈ J }. The full subcategory, X ⊆ T , consisting of the

X ∈ T satisfying (f,X) = 0 for all f ∈ ΣiJ is a definable subcategory. We show

that X = ΣiD. Indeed, X ∈ D if and only if (f,X) = 0 for all f ∈ J if and only

if (Σif,ΣiX) = 0 for all f ∈ J if and only if ΣiX ∈ X .

So ΣiD is a definable subcategory with corresponding cohomological ideal〈
ΣiJ

〉cohom
. It remains to show that ΣiJ =

〈
ΣiJ

〉cohom
. Indeed, f ∈

〈
ΣiJ

〉cohom

if and only if for every X ∈ D, (f,ΣiX) = 0 if and only if for every X ∈ D,

(Σ−if,X) = 0 if and only if Σ−if ∈ J . So
〈
ΣiJ

〉cohom
= ΣiJ as required. �

Definition 6.1.2. A definable subcategory D of T is said to be positive shift-

closed (respectively negative shift-closed) if X ∈ D implies ΣX ∈ D (respec-

tively X ∈ D implies Σ−1X ∈ D). A definable subcategory D of T is said to be

shift-closed if it is both positive and negative shift-closed.

We will say that a cohomological ideal J ⊆ morph(T c) is positive shift-

closed (respectively negative shift-closed) if f ∈ J implies Σf ∈ J (re-

spectively f ∈ J implies Σ−1f ∈ J ). We will say that a cohomological ideal

J ⊆ morph(T c) is shift-closed if it is both positive and negative shift-closed.

We will say that a Serre subcategory S of Coh(T ) is positive shift-closed

(respectively negative shift-closed) if Ff ∈ S implies FΣf ∈ S (respectively

Ff ∈ S implies FΣ−1f ∈ S). We will say that a Serre subcategory S of Coh(T ) is

shift-closed if it is both positive and negative shift-closed.

Corollary 6.1.3. A definable subcategory, D of T , is positive (respectively nega-

tive) shift-closed if and only if the corresponding cohomological ideal J of

morph(T c), is negative (respectively positive) shift-closed if and only if the cor-

responding Serre subcategory S of Coh(T ) is negative (respectively positive) shift-

closed.

Proof. D is positive shift-closed if and only if ΣD ⊆ D if and only if JD ⊆ JΣD.

But by Lemma 6.1.1 JΣD = ΣJD so D is positive shift-closed if and only if JD ⊆
ΣJD if and only if f ∈ JD implies f ∈ ΣJD (equivalently Σ−1f ∈ JD) if and

only if JD is negative shift-closed. Similarly, D is negative shift-closed if and only
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if Σ−1D ⊆ D if and only if JD ⊆ JΣ−1D = Σ−1JD if and only if JD is positive

shift-closed.

For the analogous statement regarding Serre subcategories consider Lemma

5.1.4. �

Definition 6.1.4. Say that a subset C ⊆ pinjT is closed with respect to the

positive shift-closed (respectively negative shift-closed) (respectively shift-

closed) Ziegler topology if it is of the form D ∩ pinjT for some positive shift-

closed (respectively negative shift-closed) (respectively shift-closed) definable sub-

category D.

Proposition 6.1.5. The closed subsets in Definition 6.1.4 define a topology on

pinjT in each of the three cases which we call the positive shift-closed Ziegler topol-

ogy (respectively negative shift-closed Ziegler topology) (respectively shift-closed

Ziegler topology) and denote by ZgΣ+

T (respectively ZgΣ−

T ) (respectively ZgΣ
T ).

Proof. We provide the proof in the positive shift-closed case. The proof in the neg-

ative shift-closed case is the same but with ‘positive’ and ‘negative’ interchanged.

The proof in the shift-closed case is achieved by removing ‘positive’ and ‘negative’

from the proof below.

Suppose D and D′ are positive shift-closed definable subcategories of T . Then

the definable subcategory generated by their union,
〈
D ∪ D′

〉def
, is positive shift-

closed. Indeed, it corresponds to the Serre subcategory SD ∩ SD′ , where S∗ is the

Serre subcategory corresponding to ∗ for ∗ ∈ {D,D′}. By Corollary 6.1.3, SD

and SD′ are negative shift-closed, so their intersection is also negative shift-closed.

Applying Corollary 6.1.3 again gives the required result.

If we have a family {Di : i ∈ I} of positive shift-closed definable subsets of

T , we know that the intersection
⋂
i∈I
Di is definable. We must show that it is also

positive shift-closed. We have X ∈
⋂
i∈I
Di if and only if X ∈ Di for all i ∈ I, which

implies that ΣX ∈ Di for all i ∈ I (since the Dis are positive shift-closed). But,

ΣX ∈ Di for all i ∈ I if and only if ΣX ∈
⋂
i∈I
Di, so

⋂
i∈I
Di is positive shift-closed.

It remains to note the relationship between definable subcategories and their

pure-injectives (see [36]). �
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Now let us consider a quotient topology of the Ziegler spectrum which we will

show is equivalent (up to topologically indistinguishable objects) to the shift-closed

Ziegler topology defined above.

Notation 6.1.6. Given a topological space X and an equivalence relation, ∼, on

the set X, let q : X → X/∼ denote the quotient map. We define the quotient

topology on X/∼ to have open sets given by the subsets with open inverse image

under q.

Remark 6.1.7. Any power of the shift functor applied to an indecomposable pure-

injective gives an indecomposable pure-injective. This follows as Σ is an autoe-

quivalence on T and the properties that an object of a compactly generated tri-

angulated category are ‘indecomposable’ and ‘pure-injective’ are defined in terms

of the category structure.

Definition 6.1.8. Define an equivalence relation on pinjT by P ∼Σ Q if and

only if there exists i ∈ Z such that P = ΣiQ. Let q : pinjT → pinjT /∼Σ
denote

the quotient map. We denote the quotient of the Ziegler spectrum under ∼Σ by

ZgT /∼Σ
.

Lemma 6.1.9. A definable subcategory D of T satisfies D ∩ pinjT = q−1(C ) for

some subset C ⊆ pinjT /∼Σ
if and only if D is shift-closed.

Proof. If D ∩ pinjT = q−1(C ) then P ∈ D ∩ pinjT if and only if [P ]∼Σ
∈ C if

and only if ΣiP ∈ D for all i ∈ Z. So the indecomposable pure-injectives in D are

closed under shift. The corresponding cohomological ideal J is given by

{f ∈ morph(T c) : (f, P ) = 0, ∀P ∈ D ∩ pinjT }.

Therefore if f ∈ J , then for any i ∈ Z, and P ∈ D∩pinjT , (Σif, P ) ∼= (f,Σ−iP ) =

0 as Σ−iP ∈ D ∩ pinjT . Hence f ∈ J implies Σif ∈ J for all i ∈ Z meaning J is

shift-closed and by Corollary 6.1.3, D is shift-closed as required.

Conversely, suppose D is shift-closed and set C = q(D ∩ pinjT ). Then D ∩
pinjT ⊆ q−1(C ) and if P ∈ q−1(C ) then P ∼Σ Q for some Q ∈ D. But then

P = ΣnQ ∈ D as D is shift-closed. Therefore D∩pinjT = q−1(C ) as required. �
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Given a topological space X, recall that we denote the frame of open subsets

of X by O(X).

Proposition 6.1.10. The quotient map q induces a frame isomorphism between

O(ZgΣ
T ) and O(ZgT /∼Σ

).

Proof. Suppose O ⊆ pinjT is an open subset of ZgΣ
T . Then the closed complement

C := pinjT \O = pinjT ∩ D for some shift-closed definable subcategory D. As

D is shift-closed, [P ]∼Σ
/∈ q(C ) if and only if for all i ∈ Z, ΣiP /∈ D if and

only if there exists i ∈ Z, ΣiP /∈ D if and only if [P ]∼Σ
∈ q(O). Therefore

q(O) = (pinjT /∼Σ
)\q(C ) is open.

Conversely, suppose O ′ is an open subset of ZgT /∼Σ
. Then by definition of

the quotient topology, q−1(O ′) is open in pinjT with respect to the Ziegler topol-

ogy ZgT . It is easy to see that the definable subcategory D ⊆ T such that

pinjT \q−1(O ′) = D ∩ pinjT coincides with the definable subcategory D′ such that

the closed complement C ′ in pinjT /∼Σ
of O ′ satisfies q−1(C ′) = D′ ∩ pinjT . Indeed,

P ∈ D ∩ pinjT if and only if P /∈ q−1(O ′) if and only if q(P ) ∈ C ′ if and only if

P ∈ D′ ∩ pinjT . By Lemma 6.1.9, D′ = D is shift-closed and therefore q−1(O ′) is

also open with respect to ZgΣ
T .

It is straightforward to check that O 7→ q(O) and O ′ 7→ q−1(O ′) defines an

order preserving bijection (and hence an isomorphism of frames) between the open

subsets of ZgΣ
T and ZgT /∼Σ

�

Corollary 6.1.11. P and Q are topologically indistinguishable in ZgΣ
T if and only

if [P ]∼Σ
and [Q]∼Σ

are topologically indistinguishable in ZgT /∼Σ
.

6.1.2 T -tensor-closed Ziegler topology

In this section we define a different Ziegler-type topology.

Definition 6.1.12. We say that a subset C ⊆ pinjT is closed with respect to the

T -tensor-closed Ziegler topology if there exists a T -tensor-closed definable

subcategory D of T such that C = D ∩ pinjT .
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Proposition 6.1.13. The closed subsets given in Definition 6.1.12 are the closed

subsets of a topology on pinjT which we will call the T -tensor-closed Ziegler

topology and denote by Zg⊗T .

Proof. Let {Di : i ∈ I} be a family of T -tensor-closed definable subcategories.

Then
⋂
i∈I
Di is also T -tensor-closed as if X ∈

⋂
i∈I
Di, X ∈ Di for all i ∈ I. So for

any Y ∈ T , X ⊗ Y ∈ Di for all i ∈ I, which implies X ⊗ Y ∈
⋂
i∈I
Di. Therefore,

if we set Ci := Di ∩ pinjT , then the Ci are a collection of closed subsets of pinjT

with respect to Definition 6.1.12. But we have⋂
i∈I

Ci =
⋂
i∈I

(Di ∩ pinjT ) = (
⋂
i∈I

Di) ∩ pinjT ,

so since
⋂
i∈I
Di is T -tensor-closed and definable,

⋂
i∈I

Ci is closed.

Now suppose D1 and D2 are T -tensor-closed and definable, so Ci = Di ∩ pinjT

are closed, for i = 1, 2. To show that C1 ∪ C2 is closed we need to show that

D :=
〈
D1∪D2

〉def
is T -tensor-closed. By [36], the Serre subcategory corresponding

to D is S1 ∩ S2, where Si is the Serre subcategory associated to Di for i = 1, 2.

By Theorem 5.1.8, S1 and S2 are tensor-ideals of Coh(T ). Therefore, S1 ∩ S2 is

also a tensor-ideal of Coh(T ). Applying Theorem 5.1.8 again, we get that D is

T -tensor-closed, as required. �

Remark 6.1.14. Note that every T -tensor-closed definable subcategory is shift-

closed as for all X ∈ T , ΣX ∼= Σ1⊗X.

Our aim for the rest of this section is to answer the following question.

Question 6.1.15. Is there an equivalence relation ∼⊗ on pinjT such that Zg⊗T and

ZgT /∼⊗ have isomorphic frames of open subsets?

We will show that setting P ∼⊗ Q if and only if P and Q are topologically

indistinguishable in Zg⊗T induces a split monomorphism in the category of frames

O(Zg⊗T )→ O(ZgT /∼⊗), which in general is not an isomorphism.

Definition 6.1.16. Define an equivalence relation ∼⊗ on pinjT by P ∼⊗ Q if and

only if they are topologically indistinguishable in Zg⊗T .
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Therefore we can consider the quotient topology ZgT /∼⊗ with closed subsets

C ⊆ pinjT /∼⊗ given by those subsets which satisfy q−1(C ) = D ∩ pinjT for some

definable subcategory D ⊆ T .

Let us provide an alternative characterisation of when two indecomposable

pure-injectives, P and Q, are topologically indistinguishable in Zg⊗T . Recall that

for a full subcategory X ⊆ T , we denote by
〈
X
〉def⊗

the smallest T -tensor-closed

definable subcategory containing X .

Lemma 6.1.17. P, Q ∈ pinjT are topologically indistinguishable in Zg⊗T if and

only if
〈
P
〉def⊗

=
〈
Q
〉def⊗

.

Proof. This is clear from the definition of Zg⊗T . �

Now we show that the quotient map q : pinjT → pinjT /∼⊗ maps closed subsets

of Zg⊗T to closed subsets of ZgT /∼⊗ .

Lemma 6.1.18. If D ⊆ T is definable and T -tensor-closed and C = q(D∩pinjT ),

where q : pinjT → pinjT /∼⊗ is the quotient map, then q−1(C ) = D ∩ pinjT , in

particular C is closed in ZgT /∼⊗.

Proof. If P ∈ q−1(C ) then P ∼⊗ Q for some Q ∈ D. Therefore,
〈
P
〉def⊗

=〈
Q
〉def⊗

and since D is T -tensor-closed, Q ∈ D implies
〈
P
〉def⊗

=
〈
Q
〉def⊗ ⊆ D so

P ∈ D, as required. �

Theorem 6.1.19. The quotient map q : pinjT → pinjT /∼⊗ induces a split

monomorphisms in the category of frames O(Zg⊗T )→ O(ZgT /∼⊗).

Proof. First we show that for an open subset O ∈ O(Zg⊗T ), q(O) is open in

ZgT /∼⊗ . Indeed, the closed complement C = pinjT \O of O is given by C =

D∩pinjT for some T -tensor-closed definable subcategory D. Therefore, by Lemma

6.1.18, q(C ) is closed with respect to the quotient topology and its inverse image

is C . Therefore, since q is onto, q(O) is the open complement of C .

Clearly the map q : O(Zg⊗T ) → O(ZgT /∼⊗) given by O 7→ q(O) is inclusion-

preserving and commutes with finite intersection and infinite union. Therefore, it

is a morphism of frames.
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We define a frame morphism r : O(ZgT /∼⊗) → O(Zg⊗T ) by mapping an open

subset O ′ of ZgT /∼⊗ to the open complement of
〈
D
〉def⊗ ∩ pinjT in Zg⊗T , where

D is the definable subcategory of T such that q−1(C ) = D ∩ pinjT with C =

(pinjT /∼⊗)\O ′. Noting that

〈
D ∪D′

〉def⊗
=
〈〈
D
〉def⊗ ∪

〈
D′
〉def⊗〉def

and 〈⋂
i∈I

Di
〉def⊗

=
⋂
i∈I

〈
Di
〉def⊗

,

it is easy to check that we have defined a morphism of frames. Finally note that

r ◦ q = idO(Zg⊗T ) by Lemma 6.1.18. Therefore, q is a split monomorphism in the

category of frames. �

Example 6.1.20. The split monomorphism in Theorem 6.1.19 is not in general

an isomorphism. Indeed, let T = kV4-Mod and identify the indecomposable pure-

injectives of T with the string and band modules given in Example 2.6.21.

In Example 5.1.15 we saw that
〈
M(a)

〉def
is T -tensor-closed and in partic-

ular M(a) ⊗ M(ab−1) ∼= M(a) in kV4-Mod. Let us consider the closure, C ,

of {[M(ab−1)]/∼⊗} in ZgT /∼⊗. By definition of the quotient topology q−1(C ) =

D∩pinjT where D is a definable subcategory of T . As M(a) is finite dimensional,

it is clopen in ZgT . In addition
〈
M(a)

〉def
=
〈
M(a)

〉def⊗
, so q−1([M(a)]/∼⊗) =

{M(a)} meaning {[M(a)]/∼⊗} is clopen in ZgT /∼⊗. Therefore {[M(a)]/∼⊗} /∈
C as C is the smallest closed subset of pinjT /∼⊗ containing [M(ab−1)]/∼⊗ and

C \{[M(a)]/∼⊗} is also closed.

Therefore, M(ab−1) ∈ D but M(a) ⊗M(ab−1) ∼= M(a) /∈ D. Hence D is not

T -tensor-closed and the open complement of C is not in the image of the split

embedding in Theorem 6.1.19.

6.1.3 Tensor-ideal Ziegler topology

Definition 6.1.21. We say that a subset C ⊆ pinjT is closed with respect to

the tensor-ideal Ziegler topology if there exists a definable tensor-ideal D of
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T such that C = D ∩ pinjT .

Let D(T ), DΣ(T ), D⊗(T ) and D⊗∆(T ) denote the lattice of definable subcat-

egories of T , the lattice of shift-closed definable subcategories of T , the lattice of

T -tensor-closed definable subcategories of T and the lattice of definable tensor-

ideals of T respectively.

Corollary 6.1.22. There exist isomorphisms of frames O(ZgT ) ∼= D(T )op,

O(ZgΣ
T ) ∼= DΣ(T )op and O(Zg⊗T ) ∼= D⊗(T )op such that the following diagram com-

mutes.

O(Zg⊗T ) O(ZgΣ
T ) O(ZgT )

D⊗(T )op DΣ(T )op D(T )op

∼=

inclusion inclusion

inclusioninclusion

∼= ∼=

In particular, D(T ), DΣ(T ) and D⊗(T ) are all dual frames.

Let us consider these different Ziegler-type topologies in the following simple

example.

Example 6.1.23. Let T = kG-Mod where k is a field of characteristic 5 and

G =
〈
g | g5 = 1

〉
as in Example 2.6.17 (i). The following table shows the tensor

product over k of these modules. The calculation was carried out using GAP (see

[26]); see Appendix A.2 for the GAP code.

⊗k M1 M2 M3 M4 M5

M1 M1 M2 M3 M4 M5

M2 M2 M1 ⊕M3 M2 ⊕M4 M3 ⊕M5 M
(2)
5

M3 M3 M2 ⊕M4 M1 ⊕M3 ⊕M5 M2 ⊕M (2)
5 M

(3)
5

M4 M4 M3 ⊕M5 M2 ⊕M (2)
5 M1 ⊕M (3)

5 M
(4)
5

M5 M5 M
(2)
5 M

(3)
5 M

(4)
5 M

(5)
5

By Example 2.6.19, the Ziegler spectrum of T = kG-Mod is the discrete

topology on four points. Note that ΣMi = M5−i and Σ−1 = Σ. Therefore
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ZgΣ+

T = ZgΣ−

T = ZgΣ
T are all the same topology on pinjT = {M1,M2,M3,M4}

with open subsets

{∅, {M1,M4}, {M2,M3}, pinjT }.

Clearly the only T -tensor-closed definable subcategories of kG-Mod are 0,
〈
M5

〉def

and kG-Mod. Thus the T -tensor-closed Ziegler topology of kG-Mod is the trivial

topology on four points.

The next example shows that D⊗(T ) and D⊗∆(T ) are in general different lat-

tices.

Example 6.1.24. Let T = kV4-Mod and identify the indecomposable pure-

injectives of T with the string and band modules given in Example 2.6.21. In Ex-

ample 5.1.15 we saw that
〈
M(a)

〉def
is T -tensor-closed. We show that

〈
M(a)

〉def

is not closed under extensions. Indeed, we can define a short exact sequence

0 → M(a)
α−→ M(ab−1a)

β−→ M(a) → 0 in kV4-Mod as follows. Denote the gen-

erators of M(a) by x0 and x1 with the action of a sending x0 to x1. This can be

pictured as follows.

x0

x1

a

Denote the generators of M(ab−1a) by x0, x1, x2, x3 with the action of a and b

as pictured below.

x2 x0

x3 x1

aa b

Define α : M(a) → M(ab−1a) by mapping x0 7→ x0 and x1 7→ x1 and define

β : M(ab−1a) → M(a) by mapping x0, x1 7→ 0, x2 7→ x0 and x3 7→ x1. Therefore

we have an exact triangle M(a)
α−→M(ab−1a)

β−→M(a)→ ΣM(a) in kV4-Mod and〈
M(a)

〉def
is T -tensor-closed but not a tensor-ideal.
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6.2 The Balmer spectrum of T c

Remark 6.2.1. In [11, Theorem 5.5] it is shown that the lattice of smashing tensor-

ideals, S⊗(T ), of a rigidly-compactly generated tensor triangulated category, T , is

complete and forms a frame.

By Theorem 2.6.11, the lattice, Thom(T c), of Thomason subsets of Spc(T c) is

isomorphic to the lattice, Thick⊗(T c), of thick tensor-ideals of T c.
Next we define what it means for the Telescope Conjecture to hold for T . As

we are working in the tensor triangulated setting, we provide both a non-tensor

and a tensor version of this conjecture.

Definition 6.2.2. (i) Let T be a rigidly-compactly generated tensor triangu-

lated category. We say that the Telescope Conjecture holds for T if every

smashing subcategory B ⊆ T is generated as a localising subcategory by

some thick subcategory I ⊆ T c. In this case, we necessarily have I = B∩T c.

(ii) Let T be a rigidly-compactly generated tensor triangulated category. We

say that the tensor-Telescope Conjecture holds for T if every smashing

tensor-ideal B ⊆ T is generated as a localising subcategory by some thick

tensor-ideal I ⊆ T c. In this case, we necessarily have I = B ∩ T c, (e.g. see

[10, Definition 4.2])

Remark 6.2.3. By Theorem 5.2.10, the Telescope Conjecture holds for T if and

only if every triangulated definable subcategory of T has form

{X ∈ T : (A,X) = 0,∀A ∈ I},

for some thick tensor-ideal I ⊆ T c.

Proposition 6.2.4. [10, Definition 6.1 and Proposition 6.2] There exists an in-

jective order-preserving map

∆ : Thom(T c) ↪→ S⊗(T )

which is a lattice isomorphism if and only if the tensor-Telescope Conjecture holds

for T .
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Proof. (sketch) ∆ is given by the composition

Thom(T c) ∼= Thick⊗(T c) ↪→ S⊗(T ),

where Thick⊗(T c) ↪→ S⊗(T ) maps a thick tensor-ideal of T c to the localising

subcategory of T it generates. By [10, Theorem 4.1(a)], the localising subcategory

of T generated by a thick tensor-ideal of T c is a smashing tensor-ideal.

We call the map Thick⊗(T c) ↪→ S⊗(T ) inflation. It is always injective and is

surjective if and only if the tensor-Telescope Conjecture holds for T [10, Proposi-

tion 6.2]. Therefore, if the tensor-Telescope Conjecture holds for T then inflation

is a lattice isomorphism Thick⊗(T c) ∼= S⊗(T ). �

Let us consider an example. First we recall a useful lemma.

Lemma 6.2.5. [57, Lemma 1.9] Let K be a skeletally small rigid tensor triangu-

lated category. If K is the smallest thick subcategory containing the tensor unit, 1,

then every thick subcategory of K is a thick tensor-ideal.

Example 6.2.6. Suppose R is a commutative noetherian ring. Then by ([8, The-

orem 6.3(a)] and [9, Example 4.4]) the Balmer spectrum, Spc(Dc(Mod-R)), is

homeomorphic to the Zariski spectrum, Spec(R). In addition, by [45, Corollary

3.4], the Telescope Conjecture holds for T = D(Mod-R) and the thick subcate-

gories of Dc(Mod-R) correspond to the specialisation closed subsets of Spec(R).

By Lemma 6.2.5, every thick subcategory is a thick tensor-ideal and therefore we

have a bijection between D⊗∆(T ) and the specialisation closed subsets of the Zariski

spectrum Spec(R).

In the remainder of this section we will consider the case where T is the stable

module category of a group algebra.

Definition 6.2.7. Let G be a finite group, k be an algebraically closed field of

characteristic p > 0 and M be a finite dimensional kG-module. Let H i(G,M) =

ExtikG(k,M) where ExtikG(k,M) is the ith cohomology of

0→ HomkG(P 0,M)→ HomkG(P 1,M)→ HomkG(P 2,M)→ ...
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where ... → P 2 p2

−→ P 1 p1

−→ P 0 p0

−→ k → 0 is a projective resolution of k as a

kG-module.

SetH•(G, k) =
⊕

i∈ZH
i(G, k). This is a finitely generated graded-commutative

k-algebra.

Definition 6.2.8. Let Proj(H•(G, k)) denote the space of maximal homogeneous

ideals of the graded-commutative algebra H•(G, k) strictly contained in the max-

imal ideal of positive degree elements. We endow Proj(H•(G, k)) with the Zariski

topology. That is the closed subsets of Proj(H•(G, k)) are given by

{V ∈ Proj(H•(G, k)) : I ⊆ V },

as I varies over the homogeneous ideals of H•(G, k).

For anyM ∈ kG-mod we introduce a support variety, VG(M) in Proj(H•(G, k)).

Definition 6.2.9. For any M ∈ kG-mod, define IG(M) to be the homogeneous

ideal given by the kernel of the map

H•(G, k) = Ext•kG(k, k)
−⊗kM−−−−→ Ext•kG(M,M).

We then set

VG(M) = {V ∈ Proj(H•(G, k)) : IG(M) ⊆ V }.

Proposition 6.2.10. ([15, Proposition 3.3 and Theorem 3.4] and [8, Theorem

5.9]) (Proj(H•(G, k)), σ) is a classifying support data on kG-mod, where σ is

given by M 7→ VG(M).

Remark 6.2.11. In [15, Proposition 3.3 and Theorem 3.4] it is shown that the

thick tensor-ideals of kG-mod correspond to non-empty sets of closed homogeneous

subvarieties X of Proj(H•(G, k)) which are closed under specialization in the sense

that if W ∈ X and W ′ ⊆ W then W ′ ∈ X . Notice that X 7→
⋃

W∈X
W gives a one-

to-one correspondence between these sets and the specialization closed subsets of

the topology Proj(H•(G, k)).
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Using Theorem 2.6.8 we get the following corollary.

Corollary 6.2.12. There exists a homeomorphism

Spc(kG-mod) ∼= Proj(H•(G, k)).

Proposition 6.2.13. [16, Theorem 11.12] Let T = kG-Mod where G is a finite

group and k is a field of characteristic p where p divides the order of the group.

Then the tensor-Telescope Conjecture holds for T .

Thus, by Theorem 5.2.13, the thick tensor-ideals of kG-mod correspond via an

inclusion-reversing map to the definable tensor-ideals of kG-Mod. Let us consider

a particular example.

Example 6.2.14. Let G = V4 be the Klein four group, that is V4 =
〈
x, y | x2 =

y2 = [x, y] = eG
〉 ∼= C2 × C2, k be an algebraically closed field of order 2 and set

T = kV4-Mod. By [17, Section 4.3], the non-trivial proper thick tensor-ideals of

kV4-mod are indexed by the projective line over k. In particular, {M(n(b−1a)b−1) :

n ∈ Z≥0} and {M(n(ab−1)a) : n ∈ Z≥0} are the indecomposable modules con-

tained in two thick tensor-ideals and for each λ ∈ k× the set of band modules

{B(ab−1, λ, n) : n ∈ N} is the set of indecomposable modules contained in a thick

tensor-ideal of kV4-mod. As the (tensor version of the) telescope conjecture holds

for T , the definable tensor-ideals of kV4-Mod have the form I⊥ where I is a thick

tensor-ideal of kV4-mod. Thus the non-trivial proper definable tensor-ideals of

T = kV4-Mod are indexed by the projective line over k.



Chapter 7

Internal tensor-duality

Fix a rigidly-compactly generated tensor triangulated category T . In this section

we define an internal tensor-duality of definable subcategories of T .

7.1 Defining internal tensor-duality

For any f : A → B in T c there exists a dual morphism f∨ : B∨ → A∨ given by

the following composition,

B∨
ηA⊗B∨−−−−→ A∨ ⊗ A⊗B∨ A∨⊗f⊗B∨−−−−−−→ A∨ ⊗B ⊗B∨ A∨⊗εB−−−−→ A∨.

Furthermore, for any C ∈ T c there exist an isomorphism δC : C → (C∨)∨ such

that for any f : A→ B in T c we have f = δ−1
B ◦ (f∨)∨ ◦ δA. Therefore, given any

ideal of morphisms J , f ∈ J if and only if (f∨)∨ ∈ J .

Definition 7.1.1. Given a cohomological ideal J ⊆ morph(T c), we will call the

set J ∨ = {f∨ : f ∈ J }, the internal tensor-dual of J .

By the above discussion, (J ∨)∨ = J . We will show that the internal tensor-

dual of J is also a cohomological ideal, and use the assignment J 7→ J ∨ to define

an internal tensor-duality of definable subcategories.

We apply the following Theorem.

150
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Theorem 7.1.2. [27, Theorem 7.4] Let K and T be compactly generated trian-

gulated categories. Suppose there is a duality between Kc and T c and denote by

Θ : mod-Kc ∼−→ T c-mod the induced equivalence of categories. Let ∆ : T c-mod →
mod-T c be the duality defined by ∆M(X) = (M,HX) for all X ∈ T c, where

HX = (X,−)|T c and set Γ = ∆ ◦Θ : mod-Kc → mod-T c.
Then Γ yields an inclusion-preserving bijective correspondence between the Serre

subcategories of mod-Kc and the Serre subcategories of mod-T c and therefore in-

duces an isomorphism between the open subsets of ZgK and ZgT .

Since (−)∨ : T c → T c is a duality, we have an inclusion-preserving bijective

correspondence Γ between the Serre subcategories of mod-T c and mod-T c which

induces an automorphism on the opens subsets of the Ziegler spectrum, ZgT . We

show that this bijective correspondence coincides with the assignment J 7→ J ∨

on the related (by Theorem 2.5.11) cohomological ideals.

Given (−, A)
(−,f)−−−→ (−, B)→ Gf → 0 in mod-T c, Θ(Gf ) = Ff∨ ∈ T c-mod has

presentation (A∨,−)
(f∨,−)−−−−→ (B∨,−) → Ff∨ → 0. Note that this is the duality

defined in Section 4.4, with A = T c.
Suppose A

f−→ B
f ′−→ C

f ′′−→ ΣA is an exact triangle in T c. Then, since (−)∨ is

exact we have an exact triangle (ΣA)∨
f ′′∨−−→ C∨

f ′∨−−→ B∨
f∨−→ A∨ and by definition

of ∆, we have Γ(Gf ) = ∆(Ff∨) = Gf ′′∨ .

Suppose A
f−→ B

f ′−→ C
f ′′−→ ΣA is an exact triangle in T c and therefore so

is (ΣA)∨
f ′′∨−−→ C∨

f ′∨−−→ B∨
f∨−→ A∨. If C ⊆ mod-T c is a Serre subcategory with

corresponding cohomological ideal J , then by Lemma 5.1.4, Gf ∈ C if and only if

f ′ ∈ J . By Theorem 7.1.2, ΓC ⊆ mod-T c is also a Serre subcategory and by the

above Gf ∈ C if and only if Gf ′′∨ ∈ ΓC. Therefore, applying Lemma 5.1.4 again,

f ′ ∈ J if and only if f ′∨ is in the cohomological ideal associated to ΓC. In other

words, if the cohomological ideal associated to C is J then the cohomological ideal

associated to ΓC is J ∨.

Definition 7.1.3. Given a definable subcategory D ⊆ T associated to the coho-

mological ideal J , we denote by D∨ the definable subcategory of T associated to

J ∨. We call D∨ the internal tensor-dual of D.

Given a Serre subcategory S ⊆ Coh(T ) associated to the cohomological ideal
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J we denote by S∨ the Serre subcategory of Coh(T ) associated to J ∨. We call

S∨ the internal tensor-dual of S.

Given a Serre subcategory C ⊆ mod-T c where S = δC ⊆ Coh(T ), we denote by

C∨ ⊆ mod-T c the Serre subcategory δS∨. We call C∨ the internal tensor-dual

of C.

Remark 7.1.4. Recall that every pp formula in the language L (T ) is equivalent

to a division formula φf of the form ∃yB, xA = yBf for some f : A→ B in T c (see

Section 2.5). Therefore we can define an internal tensor-duality of pp formulas by

φf 7→ φf∨ . Notice here that if φf and φf ′ are equivalent then φf∨ and φf ′∨ may not

be equivalent pp formulas but they will be isomorphic. Indeed if f : A → B and

f ′ : A→ B′, then φf∨ and φf ′∨ have free variable of sort B∨ and B′∨ respectively

and therefore are not equivalent if B 6= B′. However, by Proposition 2.5.4, there

exist morphisms k : B → B′ and l : B′ → B such that f = l ◦ f ′ and f ′ = k ◦ f .

For any X ∈ T , − ◦ k∨ : φf∨(X) → φf ′∨(X) and − ◦ l∨ : φf ′∨(X) → φf∨(X)

define inverse group isomorphisms, i.e. φf∨ and φf ′∨ are naturally isomorphic

when regarded as coherent functors T → Ab. Indeed, in order to define a specific

functor Γ : mod-T c → mod-T c one needs to fix a choice for the presentation of

each finitely presented functor in mod-T c. However, since the choices for Γ related

to each selection are naturally isomorphic, all choices give rise to the same duality

on definable subcategories.

7.2 Properties

In this section we explore some properties of internal tensor-duality.

Lemma 7.2.1. Given any set of morphisms I ⊆ morph(T c),

〈
I∨
〉cohom

= (
〈
I
〉cohom

)∨.

Proof. By the discussion after Theorem 7.1.2, we have seen that (
〈
I∨
〉cohom

)∨ is a

cohomological ideal. Therefore, since
〈
I∨
〉cohom

contains I∨, (
〈
I∨
〉cohom

)∨ contains

I and we must have
〈
I
〉cohom ⊆ (

〈
I∨
〉cohom

)∨. Applying (−)∨ we get (
〈
I
〉cohom

)∨ ⊆
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〈
I∨
〉cohom

. For the converse note that I∨ ⊆ (
〈
I
〉cohom

)∨ and (
〈
I
〉cohom

)∨ is a co-

homological ideal so
〈
I∨
〉cohom ⊆ (

〈
I
〉cohom

)∨. Hence
〈
I∨
〉cohom

= (
〈
I
〉cohom

)∨ as

required. �

Proposition 7.2.2. Let D ⊆ T be a definable subcategory with corresponding

cohomological ideal J . If D is T -tensor-closed then D = D∨.

Proof. By Theorem 5.1.8, D is a T -tensor-closed if and only if it is T c-tensor-

closed if and only if J is T c-tensor-closed.

Recall that for f : A→ B in T c, f∨ is given by

(A∨ ⊗ εB) ◦ (A∨ ⊗ f ⊗B∨) ◦ (ηA ⊗B∨).

Therefore, as J is T c-tensor-closed, A∨ ⊗ f ⊗ B∨ ∈ J so f∨ ∈ J . So J ∨ ⊆ J .

Consequently, J = (J ∨)∨ ⊆ J ∨, giving equality as required. �

Remark 7.2.3. The converse to Proposition 7.2.2 does not hold. Indeed, in Example

7.3.1 below, the definable subcategory generated by {M1,M4} is self-dual with

respect to internal tensor-duality, however it is not T -tensor-closed (consider the

table in Example 6.1.23).

Proposition 7.2.4. Suppose D ⊆ T is a positive shift-closed definable subcategory,

that is ΣD ⊆ D. Then the internal tensor-dual D∨ ⊆ T is a negative shift-closed

definable subcategory.

Proof. Suppose D ⊆ T is a positive shift-closed definable subcategory with

associated cohomological ideal J ⊆ morph(T c). Then Σ−1J ⊆ J by Corollary

6.1.3 and so (Σ−1J )∨ ⊆ J ∨. Recall that (−)∨ is exact, so in particular for any

f ∈ morph(T c), (Σ−1f)∨ ∼= Σf∨ so ΣJ ∨ ⊆ J ∨. Consequently, if X ∈ D∨, then

for all g ∈ J ∨, (Σg,X) = 0 = (g,Σ−1X). Therefore, Σ−1X ∈ D∨. Hence D∨ is

negative shift-closed as required. �

Theorem 7.2.5. Internal tensor-duality induces a lattice automorphism on

O(ZgT ) which gives an isomorphism O(ZgΣ+

T ) ∼= O(ZgΣ−

T ), restricts to an auto-

morphism on O(ZgΣ
T ) = O(ZgΣ+

T ) ∩O(ZgΣ−

T ) and fixes O(Zg⊗T ).
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Proof. First we show that the induced map is inclusion-preserving. Given open

subsets O ⊆ O ′ in O(ZgT ), the closed complements satisfy pinjT \O = D ∩ pinjT

and pinjT \O ′ = D′ ∩ pinjT where D and D′ are definable subcategories with

D′ ⊆ D. Therefore the corresponding cohomological ideals satisfy JD ⊆ JD′ and

since (−)∨ is inclusion-preserving we have J ∨D ⊆ J ∨D′ . So D′∨ ⊆ D∨ which gives

O∨ ⊆ O ′∨ where O∨ := pinjT \(D∨ ∩ pinjT ) and O ′∨ := pinjT \(D′∨ ∩ pinjT ).

Therefore since (−)∨ is clearly self-inverse, we have an automorphism on O(ZgT ).

It remains to apply Proposition 7.2.2 and Proposition 7.2.4. �

7.3 Examples

Let us consider some examples.

Example 7.3.1. Suppose G =
〈
g | g5 = 1

〉
is the cyclic group of order five and

let k be a field of characteristic 5. Then kG ∼= k[T ]/(T 5) under the isomorphism

T 7→ g − 1. As in Example 2.6.19, let Mi = k[T ]/(T i) for i = 1, ..., 5 be the

indecomposable (finite dimensional) modules.

Denote by φij : Mn → Mm the k-linear map which takes T i−1 to T j−1. Then

the φij for 1 ≤ i ≤ n and 1 ≤ j ≤ m form a basis for all k-linear maps from Mn

to Mm.

Let f = φ12 +φ23 : M2 →M3 and consider the definable subcategory D = {X ∈
kG-Mod : Hom(f,X) = 0}. We claim that D =

〈
M1

〉def
. Since every definable

subcategory is generated by its indecomposable pure-injectives, it is sufficient to

check that M1 ∈ D but M2, ...,M4 /∈ D.

Since there are no non-zero kG-linear morphisms from M2 → M5 → M3, f

is non-zero in Hom(M2,M3). Also note that the only kG-linear morphisms from

M3 →M1 have the form λφ11 for some λ ∈ k. Therefore for any h = λφ11 : M3 →
M1, h ◦ f = 0, in other words (f,M1) = 0 (both in kG-Mod and kG-Mod) and

M1 ∈ D.

M2 /∈ D as λ(φ11 + φ22) : M3 → M2 is kG-linear for any λ ∈ k, and λ(φ11 +

φ22) ◦ f = λφ12 : M2 → M2 is non-zero when λ is non-zero. M3 /∈ D, as (f,M3) :
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(M3,M3) → (M2,M3) maps idM3 7→ f and M4 /∈ D as (φ12 + φ23 + φ34) ◦ f =

φ13 + φ24 which is non-zero in Hom(M2,M4).

Now let us calculate the dual definable subcategory of D. Let X ∈ kG-mod have

fixed k-basis, {x1, ..., xn}. The unit, ηX : k → X∨⊗X, and counit, εX : X⊗X∨ →
k, of the adjunction X ⊗− a X∨ ⊗− are given by ηX : 1 7→

∑n
j=1 φj1 ⊗ xj and ,

εX : xi ⊗ φj1 7→ δij, where φj1 : X → k maps xj → 1.

Similarly the unit and counit of the adjunction X∨ ⊗− a X ⊗− are given by

η′X : k → X ⊗X∨, 1 7→
∑n

j=1 xj ⊗ φj1 and ε′X : X∨ ⊗X → k, φj1 ⊗ xi 7→ δji.

Recall that given a morphism g : A→ B in kG-mod, g∨ = (A∨ ⊗ εB) ◦ (A∨ ⊗
g⊗B∨) ◦ (ηA ⊗B∨). In particular if we fix {1, T} as an ordered basis for M2 and

{1, T, T 2} as an ordered basis for M3, we have

f∨ : φi1 7→
2∑
j=1

φj1 ⊗ T j−1 ⊗ φi1 7→
2∑
j=1

φj1 ⊗ T j ⊗ φi1 7→ φi−11,

where φ01 = 0.

It is straight forward to check that for any φi1 ∈M∨
n ,

Tφi1 =

0, if i = 1

(−1)i
∑i−1

j=1(−1)jφj1, i ≥ 2.

Therefore, we can define an isomorphism M3
∼= M∨

3 given by T 2 7→ φ11, T 7→ −φ21

and 1 7→ φ31 + φ21. Similarly, we have an isomorphism M∨
2
∼= M2 given by

φ11 7→ T , −φ21 7→ 1. Thus, f∨ ∼= φ12 − φ11 − φ22 : M3 →M2.

M1 /∈ D∨ as φ11 ◦ (φ12 − φ11 − φ22) = −φ11 : M3 → M1 is non-zero in

Hom(M3,M1). Clearly, M2 /∈ D∨. In addition, (φ12 + φ23) ◦ (φ12 − φ11 − φ22) =

−φ12 − φ23 + φ13 : M3 → M3 is non-zero in Hom(M3,M1) so M3 /∈ D∨. Finally,

the only kG-linear maps from M2 → M4 have form a(φ13 + φ24) + bφ14, so any

map in the image of (φ12− φ11− φ22,M4) has form a(−φ13− φ24 + φ14)− bφ14 for

some a, b ∈ k. However, this map factors via the projective M5 as

M3
−(φ13+φ24+φ35)+φ14+φ25−−−−−−−−−−−−−−−→M5

a(φ11+φ22+φ33+φ44)+b(φ12+φ23+φ34)−−−−−−−−−−−−−−−−−−−−−−→M4,
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so M4 ∈ D∨.

In summary, if D =
〈
M1

〉def
then D∨ =

〈
M4

〉def
.

Now let g = φ11 : M3 → M1 and h = φ11 : M4 → M1. Let Jg and Jh be the

cohomological ideals generated by g and h respectively and denote the corresponding

definable subcategories by Dg and Dh respectively. It is straight forward to check

that Dg =
〈
M3,M4

〉def
and Dh =

〈
M2,M3,M4

〉def
. Furthermore, g∨ ∼= φ13 : M1 →

M3 and h∨ ∼= φ14 : M1 → M4 and one can check that D∨g =
〈
M1,M2

〉def
and

D∨h =
〈
M1,M2,M3

〉def
. Therefore we have

〈
M2

〉def
= Dh ∩ D∨g and (

〈
M2

〉def
)∨ =

D∨h ∩ Dg =
〈
M3

〉def
. We have shown that for any definable subcategory D ⊆

kG-Mod and for i = 1, ..., 4, if Mi ∈ D then M5−i ∈ D∨.

Example 7.3.2. Suppose G =
〈
g | g5 = 1

〉
is the cyclic group of order five, let k be

a field of characteristic 5 and let Mi for i = 1, ..., 5 denote the indecomposable pure-

injectives, as in the above example. We show that the internal tensor-duality on

the definable subcategories of kG-Mod and elementary duality of definable subcat-

egories of kG-Mod do not coincide. Given the pp pair φ/ψ where ψ(x) is T ix = 0

and φ(x) is T i+1x = 0, the corresponding definable subcategory is generated by

M1, ...,Mi, as for all these, T i annihilates the whole module. The elementary dual

pp-pair is Dψ/Dφ where Dφ(x): ∃y, x = yT i+1 and Dψ(x): ∃y, x = yT i. There-

fore the elementary dual definable subcategory is generated by M1, ...,Mi. That is,

the definable subcategory generated by {M1, ...,Mi} for any i = 1, ..., 4 is self-dual

with respect to elementary duality, whereas the internal tensor-dual is given by

{M5−i, ...,M4} which only coincides with {M1, ...,Mi} when i = 4.

In rest of this section we will record some results from [4] which describe internal

tensor-duality in the derived category of modules over a commutative ring.

Suppose R is a ring. We begin by considering two dualities.

Definition 7.3.3. [4, Section 2.2] Denote by (−)∗ the functor

RHom(−, R) : D(Mod-R)→ D(R-Mod).

As described in [4, Section 2.2], (−)∗ restricts to a duality between compact objects

and when R is commutative (−)∗ is the internal hom-functor and on compact
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objects (−)∗ = (−)∨, where (−)∨ is as in Definition 2.3.1.

Now assume R is a k-algebra for some commutative ring k and let W be an

injective cogenerator in Mod-k (e.g. k = Z and W = Q/Z). Denote by (−)+ the

functor

RHomk(−,W ) : D(Mod-R)→ D(R-Mod).

We will use the same notation for the quasi-inverse (contravariant) functors

(−)∗ = RHom(−, R) : D(R-Mod) → D(Mod-R) and (−)+ = RHomk(−,W ) :

D(R-Mod)→ D(Mod-R).

Definition 7.3.4. (see [4, Lemma 2.3]) Given a definable subcategory

D ⊆ D(Mod-R) with corresponding cohomological ideal J ⊆ morph(Dc(Mod-R))

we denote by D∗ ⊆ D(R-Mod) the definable subcategory corresponding to the

cohomological ideal J ∗ ⊆ morph(Dc(R-Mod)).

Remarks 7.3.5. (i) The restriction of (−)∗ to compact objects is the duality D

used in [27, Corollary 7.5] to give an inclusion-preserving bijective correspon-

dence between the Serre subcategories of Dc(Mod-R) and Dc(R-Mod).

(ii) D∗ and D∨ coincide in the case that R is commutative. In particular, the du-

ality given in [27, Corollary 7.5] and the internal tensor-duality of Definition

7.1.3 coincide when R is a commutative ring and T = D(Mod-R).

The following lemma from [4] gives us a better understanding of internal tensor-

duality in the case T = D(R-Mod) for R a commutative ring.

Lemma 7.3.6. [4, Lemma 2.3] Suppose D is a definable subcategory of D(Mod-R).

For every X ∈ D(Mod-R), X ∈ D if and only if X+ ∈ D∗.
For every Y ∈ D(R-Mod), Y ∈ D∗ if and only if Y + ∈ D.



Chapter 8

Torsion pairs and definability

8.1 Internal tensor-duality of torsion pairs with

definable coaisles

Recall that if T = D(R-Mod) where R is a commutative ring, then internal tensor-

duality coincides with the duality defined in [4, Lemma 2.3] (see Chapter 7). In

this section we extend some results from [4] to the setting of algebraic rigidly-

compactly generated tensor triangulated categories.

Recall (Definition 5.2.3) that a torsion pair (U ,V) is a pair of full additive sub-

categories of T which are closed under direct summands, there are no morphisms

from an object in U to an object in V and for every X ∈ T , there exists an exact

triangle U → X → V → ΣU with U ∈ U and V ∈ V . As a consequence both U
and V are closed under extensions and therefore triangulated if and only if they

are shift-closed. First let us consider stable and compactly generated torsion pairs

with definable coaisles.

Definition 8.1.1. We say that a torsion pair (U ,V) is stable if it is both a

t-structure and a co-t-structure. In particular, both U and V are triangulated

subcategories of T .

The correspondence between triangulated definable subcategories and smash-

ing subcategories in Theorem 5.2.10 can be rephrased as follows.

158
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Theorem 8.1.2. Suppose (U ,V) is a stable torsion pair. Then V is definable if

and only if U is a smashing subcategory of T .

Definition 8.1.3. A torsion pair (U ,V) is said to be generated by a set of objects

X ⊆ T if (U ,V) = (⊥(X⊥),X⊥). If X is a set of compact objects, (U ,V) is said

to be compactly generated.

Remarks 8.1.4. (i) Every compactly generated torsion pair has a definable

coaisle since V = {X ∈ T : (idA, X) = 0 ∀A ∈ X}. The associated co-

homological ideal is generated by identity morphisms.

(ii) The Telescope Conjecture holds for T if and only if every stable torsion

pair whose coaisle is definable, is a compactly generated torsion pair. The

tensor-Telescope Conjecture holds for T if and only if every stable torsion

pair whose coaisle is a definable tensor-ideal, is a compactly generated torsion

pair.

Lemma 8.1.5. [2, Theorem 4.3] For every set of compact objects X ⊆ T c,
(⊥(X⊥),X⊥) forms a torsion pair.

Proposition 8.1.6. Internal tensor-duality yields a bijection

{
Compactly generated

t−structures

}
↔
{

Compactly generated
co−t−structures

}
.

Proof. (U ,V) is a compactly generated t-structure generated by X ⊆ T c if and

only if the cohomological ideal J associated to the negative-shift-closed definable

subcategory V is generated by {idA : ∀A ∈ X}. By Lemma 7.2.1, J is generated

by {idA : ∀A ∈ X} if and only if the cohomological ideal J ∨ associated to the

definable subcategory V∨ is generated by {idA∨ : ∀A∨ ∈ X ∨}. By Proposition

7.2.4, V is negative shift-closed if and only if V∨ is positive shift-closed.

Thus, (⊥(X⊥),X⊥) is a compactly generated t-structure generated by X ⊆ T c

if and only if (⊥((X ∨)⊥), (X ∨)⊥) is a compactly generated co-t-structure. �

For the rest of this section we assume that T is algebraic. This assumption

allows us to extend Proposition 8.1.6 to TTF triples (defined below).
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Definition 8.1.7. A compactly generated triangulated category T is said to be

algebraic if it is equivalent to the derived category of a small dg category or

equivalently the stable category of a Frobenius exact category which is compactly

generated (see for example [40, Section 3] for more details).

Definition 8.1.8. [4, Section 2.5] A TTF (torsion-torsion-free) triple

(U ,V ,W) is formed by two adjacent torsion pairs (U ,V) and (V ,W). A TTF

triple (U ,V ,W) is said to be suspended (respectively cosuspended) if ΣV ⊆ V
(respectively Σ−1V ⊆ V). A TTF triple (U ,V ,W) is said to be generated by a

set of objects X of T if V = X⊥. If X is a set of compact objects, (U ,V ,W) is

said to be compactly generated.

Suppose (U ,V ,W) is a TTF triple with V definable. Let V∨ be the internal

tensor-dual of V and set U ′ = ⊥V∨ and W ′ = (V∨)⊥. We consider whether

(U ′,V∨,W ′) forms a TTF triple. We introduce the following terminology.

Definition 8.1.9. We will say that a TTF triple (U ,V ,W) is definable if V is a

definable subcategory of T .

Under the assumption that T is an algebraic rigidly-compactly generated tensor

triangulated category, we have the following lemma.

Lemma 8.1.10. ([2, Theorem 4.3] and [58, Theorem 3.11]) For every set X of

compact objects, (⊥(X⊥),X⊥, (X⊥)⊥) is a TTF triple.

Proposition 8.1.11. Suppose T is an algebraic rigidly-compactly generated ten-

sor triangulated category. Then internal tensor-duality of definable subcategories

induces a bijective correspondence

{
Suspended compactly generated

TTF triples

}
↔
{

Cosuspended compactly generated
TTF triples

}
.

Proof. By Lemma 8.1.10, for every set X of compact objects (⊥(X⊥),X⊥, (X⊥)⊥)

is a TTF triple. Thus every compactly generated t-structure (U ,V) extends to a

cosuspended TTF triple (U ,V ,W) and every compactly generated co-t-structure

(U ′,V ′) extends to a suspended TTF triple (U ′,V ′,W ′). The result then follows

from Proposition 8.1.6. �
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Remarks 8.1.12. (i) For T = D(R-Mod) where R is a commutative ring, this

correspondence coincides with the 1-1 correspondence given in [4, Theorem

3.1] (see Theorem 8.2.14).

(ii) If (U ,V ,W) and (U ′,V∨,W ′) correspond as in Proposition 8.1.11, then U ∩
T c)∨ = U ′ ∩ T c.

Next we extend Proposition 8.1.11 to definable TTF triples. The following

proposition will be useful.

Proposition 8.1.13. [37, Lemma 4.2 and Theorem 12.1] Suppose a torsion pair

(U ,V) has a definable coaisle. Then the cohomological ideal corresponding to V is

given by J = {f ∈ morph(T c) : f factors via some U ∈ U}.

Proof. Clearly if f ∈ morph(T c) factors through some object in U then f ∈ J .

Conversely, suppose f : A→ B is a morphism in J . Since (U ,V) is a torsion pair,

we have an exact triangle U
g−→ B

k−→ V → ΣU with U ∈ U and V ∈ V . Since

(f, V ) = 0 we must have that k ◦ f = 0. But then since g is a weak kernel of k, f

factors via g, say f = g ◦ f ′ as required. �

Lemma 8.1.14. Let D ⊆ T be a definable subcategory. If D is extension-closed

then (⊥D,D) is a torsion pair. If, in addition, we assume that T is an algebraic

triangulated category, then (D,D⊥) is also a torsion pair and D fits into a TTF

triple (⊥D,D,D⊥).

Proof. It is well known that any definable subcategory D ⊆ T is preenveloping

[5, Proposition 4.5]. If in addition we assume that T is an algebraic triangulated

category, then any definable subcategory D ⊆ T is precovering [40, Corollary 4.8].

It remains to apply Corollary 5.2.7. �

Next we use results from [37] to prove the following lemma.

Lemma 8.1.15. D ⊆ T is extension-closed if and only if D∨ ⊆ T is extension-

closed.

Proof. First we show that a definable subcategory D is extension-closed if and

only if the corresponding cohomological ideal J ⊆ morph(T c) is idempotent.
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Suppose J = J 2 and let X
α−→ Y

β−→ Z → ΣX be an exact triangle in T with

X,Z ∈ D. Assume f : A → B is an morphism in J . Then f = h ◦ g for some

g : A → A′ and h : A′ → B in J . Therefore, given any morphism k : B → Y ,

β ◦ k ◦ h = 0 as Z ∈ D meaning k ◦ h = α ◦ h′ for some h′ : A′ → X, as shown

below.

A B

A′

X Y Z ΣX

g h

f

α β

k

h′

Consequently, k ◦f = k ◦h◦g = α◦h′ ◦g, but h′ ◦g = 0 as X ∈ D, so k ◦f = 0

and Y ∈ D. Therefore D is extension-closed.

Conversely, assume D is extension-closed and let J be the corresponding co-

homological ideal. By Lemma 8.1.13,

J = {f ∈ morph(T c) : f factors through some X ∈ ⊥D}.

Following the proof of [37, Theorem 12.1], we show that any morphism f : A →
U where U ∈ ⊥D factors through some g ∈ J . Denote by C ⊆ mod-T c the

Serre subcategory corresponding to D, that is C = {im Hf : f ∈ J }, and set

L = lim−→ C. Then L ⊆ Mod-T c is a localising subcategory and Mod-T c/L is an

abelian Grothendieck category. Let I be an injective cogenerator of Mod-T c/L,

let q : Mod-T c → Mod-T c/L be the quotient functor and denote the right adjoint

to q by r : Mod-T c/L → Mod-T c. Notice that (H(−), r(I)) : T op → Ab is a

homological functor which takes coproducts to products. Therefore by Brown’s

representability theorem [42, Theorem 3.1], there exists some X ∈ T such that

Mod-T c(HX , r(I)) ∼= T (−, X). For all g ∈ J , (Hg, r(I)) = 0, as im Hg ∈ C ⊆
L, so for all g ∈ J , (g,X) = 0 meaning X ∈ D. Therefore if U ∈ ⊥D then

(HU , r(I)) ∼= (U,X) = 0 and consequently Mod-T c/L(HU , I) = 0 meaning HU ∈



8.1. TENSOR-DUALITY AND TORSION PAIRS 163

L. Therefore we can write HU as a direct limit HU = lim−→ im Hgi where each gi ∈ J .

Suppose f : A→ U . Then there exists some i ∈ I such that Hf : HA → HU factors

through the colimit map λi : im Hgi → HU , say Hf = λi◦γ. We have the following

diagram.

HA HU

im Hgi

HUi HVi

Hf

γ λi

ι

Hgi

Recall that HU is absolutely pure or equivalently fp-injective (Theorem 2.5.13),

so λi factors through ι as shown by the dashed line in the above diagram. In

addition, HA is projective since A ∈ T c, so γ factors via HUi as pictured below.

HA HU

im Hgi

HUi HVi

Hf

γ λi

ι

Hgi

By Yoneda’s lemma, the dashed lines on the above diagram are of the form

(−, k) and (−, l) where k : A→ Ui and l : Vi → U . Therefore f = l ◦ gi ◦ k and in

particular f factors via some gi : Ui → Vi in J .

We have shown that any morphism in J factors as A
f−→ U

f ′−→ B for some

U ∈ ⊥D and f : A → U factors as A
k−→ Ui

gi−→ Vi
l−→ U for some gi ∈ J . Since

A ∈ T c and J is an ideal gi ◦ k ∈ J and since f ′ ◦ l : Vi → B is a morphism in T c

which factors via U ∈ ⊥D, f ′ ◦ l ∈ J . Therefore J = J 2 as required.

It remains to note that J = J 2 if and only if J ∨ = (J ∨)2. �
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Theorem 8.1.16. Let T be an algebraic rigidly-compactly generated tensor trian-

gulated category. Then internal tensor-duality induces a bijection

{
Suspended definable

TTF triples in T
}
↔
{

Cosuspended definable
TTF triples in T

}
which restricts to an automorphism on the class

{
Stable definable
TTF triples in T

}
and restricts to a bijection

{
Suspended compactly generated

TTF triples in T
}
↔
{

Cosuspended compactly generated
TTF triples in T

}
.

Proof. Suppose (U ,V ,W) is a suspended definable TTF triple. Then ΣV ⊆ V
and V is extension-closed. By Lemma 8.1.15, V∨ is also extension-closed and by

Proposition 7.2.4 V∨ is negative shift-closed. Thus V∨ is cosuspended. Applying

Lemma 8.1.14 we get a cosuspended definable TTF triple (U ′,V∨,W ′). Conversely,

if (U ,V ,W) is a cosuspended definable TTF triple, then (U ′,V∨,W ′) is a suspended

definable TTF triple by a similar argument. A TTF triple (U ,V ,W) is stable and

definable if and only if V is a shift-closed definable subcategory. In this case, by

Proposition 7.2.4, V∨ is a shift-closed definable subcategory and by Lemma 8.1.14,

V∨ can be extended to a TTF triple (U ′,V∨,W ′). The restriction to compactly

generated TTF triples is Proposition 8.1.11. �

8.2 Silting and cosilting objects

In this section we consider the case T = D(R-Mod) where R is a commutative

ring. We describe how the bijection in Theorem 8.1.16 restricts to an injective

map from certain silting objects to pure-injective cosilting objects. In turn this

injective map restricts to the silting-cosilting duality established in [4, Theorem

3.1 and Theorem 3.3].

Notation 8.2.1. Recall from Notation 5.2.1 that for any I ⊆ Z, X⊥I = {Z ∈ T :
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(X,ΣiZ) = 0,∀X ∈ X , i ∈ I} and ⊥IX = {Z ∈ T : (Z,ΣiX) = 0, ∀X ∈ X , i ∈ I}.
If I = {i ∈ Z : i > 0} we will write ⊥> 0 and if I = {i ∈ Z : i ≤ 0} we will write

⊥≤ 0.

Definition 8.2.2. [52, Definition 4.1] An object S ∈ T is silting if (S⊥>0, S⊥≤0) is

a t-structure in T . An object C ∈ T is cosilting if (⊥≤0C, ⊥>0C) is a t-structure in

T . Two silting (respectively cosilting) objects S and S ′ in a triangulated category

with coproducts are said to be equivalent if they induce the same t-structure.

Example 8.2.3. [52, Example 4.2] Let A be an abelian category with a projective

generator P . Then P is a silting (in fact tilting) object in D(A) and the associated

t-structure is the standard one. Dually, if A has an injective cogenerator E then

E is cosilting (in fact cotilting) in D(A) and the associated cotilting t-structure is

also the standard one.

Definition 8.2.4. [4, Section 2.5] A torsion pair (U ,V) is said to be

non-degenerate if ∩
n∈Z

ΣnU = 0 = ∩
n∈Z

ΣnV . A suspended TTF triple (U ,V ,W) is

said to be non-degenerate if so is the t-structure (V ,W). A cosuspended TTF

triple (U ,V ,W) is said to be non-degenerate if so is the t-structure (U ,V).

Definition 8.2.5. A subset X ⊆ D(R-Mod) is said to be closed under directed

homotopy colimits if for every directed diagram of chain complexes, {Xi : i ∈ I},
in Ch(R-Mod) such that (when viewed as an element of D(R-Mod)), each Xi is in

X , then the direct limit lim−→i∈IXi (calculated in Ch(R-Mod)) belongs to X .

A TTF triple (U ,V ,W) is said to be homotopically smashing if V is closed

under directed homotopy colimits.

The following result characterises silting and cosilting t-structures in terms of

non-degenerate TTF triples.

Proposition 8.2.6. [3, Theorem 4.11 and Theorem 6.13] There is a bijective

correspondence between silting t-structures (V ,W) and non-degenerate suspended

TTF triples (U ,V ,W) which are generated by a set of objects.

If T is an algebraic compactly-generated triangulated category, then there is a

bijective correspondence between the t-structures (U ,V) which are generated by a
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pure-injective cosilting object and non-degenerate cosuspended TTF triples (U ,V ,W)

which are homotopically smashing.

In addition we have the following.

Proposition 8.2.7. [39, Theorem 4.6] Suppose T is an algebraic compactly-

generated triangulated category and t = (U ,V) is a non-degenerate t-structure.

Then t is generated by a pure-injective cosilting object if and only if V is definable.

Lemma 8.2.8. Suppose V ⊆ T is definable and extension-closed. Then
⋂
n∈Z

ΣnV =

0 if and only if
⋂
n∈Z

ΣnV∨ = 0.

Proof. Suppose V ⊆ T is definable and extension-closed and
⋂
n∈Z ΣnV = 0.

Then by Lemma 6.1.1,
〈 ⋃
n∈Z

ΣnJ
〉cohom

= morph(T c) where J is the cohomo-

logical ideal associated to V . But then
〈 ⋃
n∈Z

ΣnJ ∨
〉cohom

=
〈
(
⋃
n∈Z

Σ−nJ )∨
〉cohom

=

(
〈 ⋃
n∈Z

ΣnJ
〉cohom

)∨ = morph(T c), using Lemma 7.2.1. So
⋂
n∈Z

ΣnV∨ = 0 as required.

�

For the rest of this section we restrict to the case T = D(R-Mod) where R

is a commutative ring. Recall that (−)+ denotes the functor RHomk(−,W ) :

D(Mod-R) → D(R-Mod) ∼= D(Mod-R) where R is a k-algebra for some commu-

tative ring k and W is an injective cogenerator for Mod-k (Definition 7.3.3).

In this case non-degeneracy is preserved by one direction of the bijective cor-

respondence given in Theorem 8.1.16.

Lemma 8.2.9. [4, Lemma 3.2] Suppose (U ,V ,W) is a suspended TTF triple such

that V is definable and let (U ′,V∨,W ′) denote the dual cosuspended TTF triple with

respect to Theorem 8.1.16. If (U ,V ,W) is non-degenerate then so is (U ′,V∨,W ′).

Proof. Suppose X ∈
⋂
n∈Z

ΣnU ′ = ⊥ZV∨. Then RHom(X,V∨) = 0 since

Hn(RHom(X,V∨)) ∼= (ΣnR,RHom(X,V∨)) ∼= (X,Σ−nV∨) = 0
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for all n ∈ Z. By Lemma 7.3.6 V+ ⊆ V∨ so RHom(X,V+) = 0. But by [4, Lemma

2.1], RHom(X,V+) ∼= RHom(V , X+) so RHom(V , X+) = 0 meaning

0 = Hn(RHom(V , X+)) ∼= (ΣnR,RHom(V , X+)) ∼= (V ,Σ−nX+)

for all n ∈ Z. Therefore X+ ∈ V⊥Z =
⋂
n∈Z

ΣnW = 0, i.e. X+ = 0. Thus X = 0 and⋂
n∈Z

ΣnU ′ = 0 as required. �

Proposition 8.2.10. Let T = D(R-Mod) where R is a commutative ring. Inter-

nal tensor-duality gives rise to an injective map

{ Silting objects S in D(R-Mod)

with S⊥>0 definable, up to equivalence

}
↪→
{

Pure−injective cosilting objects
in D(R-Mod), up to equivalence

}
.

Proof. We have seen that every silting object gives rise to a non-degenerate

suspended TTF triple (U ,V ,W) by (Proposition 8.2.6). Therefore, if in addition

V = S⊥>0 is definable we can apply Theorem 8.1.16 to get a cosuspended TTF

triple (U ′,V∨,W ′). By Lemma 8.2.8 and Lemma 8.2.9 we have that (U ′,V∨,W ′)
is non-degenerate and therefore applying Proposition 8.2.6 again, we get a pure-

injective cosilting object. �

Remark 8.2.11. The map in Proposition 8.2.10 is surjective if and only if the

converse to Lemma 8.2.9 holds.

Next we give a result from [4] which, in the case that R is a commutative ring,

uses a restriction of the injective map given in Proposition 8.2.10. First we need

some definitions.

Definition 8.2.12. [4, Definition 2.13] A silting object S ∈ D(Mod-R) is of finite

type if the TTF triple it induces is compactly generated. Similarly, a cosilting

object C ∈ D(R-Mod) is said to be of cofinite type if it induces a compactly

generated TTF triple.

Definition 8.2.13. [4, Section 2.6] A silting object in D(Mod-R) is called a

bounded silting complex if it belongs to Kb(Proj-R). Similarly, a cosilting

object in D(R-Mod) is a bounded cosilting complex if it belongs to Kb(R-Inj).
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The following theorem from [4] shows how the correspondence in Proposition

8.2.10 restricts to a silting-cosilting duality.

Theorem 8.2.14. [4, Theorem 3.1 and Theorem 3.3] Suppose R is any ring.

There is a one-to-one correspondence

{
Compactly generated

TTF−triples in D(Mod-R)

}
←→

{
Compactly generated

TTF−triples in D(R-Mod)

}
,

given by mapping the TTF triple in D(Mod-R) generated by the set S of compact

objects to the TTF triple in D(R-Mod) generated by S∗ = {C∗ : C ∈ S}.
Furthermore, this correspondence induces an injective map

{
Silting objects of finite type

in D(Mod-R), up to equivalence

}
↪→
{

Cosilting objects of cofinite type
in D(R-Mod), up to equivalence

}
,

which is given by S 7→ S+ and restricts to a bijection

{
Bounded silting complexes

in D(Mod-R), up to equivalence

}
↔
{

Bounded cosilting complexes of cofinite type
in D(R-Mod), up to equivalence

}
.

8.3 T-structures with monoidal hearts

In this section we take a closer look at the example T = D(R-Mod) where R

is a coherent commutative ring of weak global dimension at most one such that

every finitely presented R-module has finite projective dimension. Here T comes

equipped with the standard t-structure which has the monoidal heart R-Mod. We

show that for each definable subcategory D of T and each n ∈ Z, Hn(D) and

H−n(D∨) are elementary dual definable subcategories of R-Mod.

We begin with some background on t-structures in compactly generated tri-

angulated categories. Suppose (U ,V) is a t-structure. Then U is suspended and

precovering and V is cosuspended and preenveloping. Therefore we can apply

Proposition 5.2.6, which results in the following adjoint functors.

Definition 8.3.1. We define the truncation functors τU : T → U (respectively

τV : T → V) to be the right adjoint to the inclusion functor U ↪→ T (respectively

left adjoint to the inclusion functor V ↪→ T ).
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It follows from the existence of these truncation functors that the triangle in

part (iii) of the definition of a torsion pair is actually functorial and can be written

as τU(X)→ X → τV(X)→ ΣτU(X).

Recall that the heart of the t-structure (U ,V) is given by Ht = U ∩ ΣV .

Given a t-structure t = (U ,V) there exists a functor H0
t : T → Ht given by

H0
t = τU ◦ Σ ◦ τV ◦ Σ−1. In addition, we set Hn

t = H0
t ◦ Σn for any integer n. We

have the following proposition.

Proposition 8.3.2. (e.g. see [32, Proposition 10.1.11(i)]) The heart of a t-

structure, t = (U ,V), is an abelian category and H0
t : T → Ht is a cohomological

functor.

Below we give a standard example which motivates these definitions.

Example 8.3.3. Let A be an abelian category. The standard t-structure in

D(A) is given by D = (D≤0,D≥1) where D≤0 = {X ∈ D(A) : H i
0(X) = 0, ∀i > 0}

and D≥1 = {X ∈ D(A) : H i
0(X) = 0, ∀i < 1} where H i

0 : D(A) → A denotes the

usual ith cohomology functor.

The heart of the standard t-structure is D≤0 ∩ D≥0 = {X ∈ D(A) : H i
0(X) =

0, ∀i 6= 0} and is therefore equivalent to the category A. Furthermore the coho-

mological functor Hn
D : D(A)→ HD ' A is the nth cohomology functor.

In particular, if A = R-Mod for some commutative ring R then D(R-Mod)

is a rigidly-compactly generated tensor triangulated category and the heart has an

additive closed symmetric monoidal structure given by the tensor product of R-

modules, ⊗R.

Next we give some results comparing the Ziegler spectrum of D(R-Mod) with

the Ziegler spectrum of R-Mod. We begin with the following definition using the

notation of [27].

Definition 8.3.4. Define a functor In : R-Mod→ D(R-Mod) given on objects by

M 7→M [−n], for each n ∈ Z.

Proposition 8.3.5. ([27, Proposition 7.1]) For each n ∈ Z, the functor In :

R-Mod→ D(R-Mod) maps indecomposable pure-injective R-modules to indecom-

posable pure-injective objects in D(R-Mod).
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Definition 8.3.6. We denote by ZgnR ⊆ ZgD(R-Mod) the set of (isomorphism

classes of) indecomposable pure-injectives in the image of the restriction of In

to Zg(R-Mod).

The following theorem was proven in [27].

Theorem 8.3.7. ([27, Theorem 7.3]) Let R be a ring. The following statements

hold.

(i) For each n ∈ Z, ZgnR is a closed subset of ZgD(R-Mod).

(ii) Suppose R is right coherent and every finitely presented R-module has finite

projective dimension. Then In induces a homeomorphism between Zg(R-Mod)

and ZgnR ⊆ ZgD(R-Mod) with the subspace topology.

(iii) The disjoint union
⋃
n∈Z

ZgnR is a closed subset in ZgD(R-Mod) with open com-

plement X consisting of the indecomposable pure-injective complexes with at

least two non-zero cohomology groups. Thus,

ZgD(R-Mod) = X ∪
⋃
n∈Z

ZgnR.

In [27] it is shown using the above theorem, that ZgD(R-Mod) =
⋃
n∈Z

ZgnR for R

von Neumann regular or right hereditary. In [13] the authors give the following

generalisation.

Theorem 8.3.8. [13, Theorem 3.4 and Corollary 3.6] Let R be a ring of weak

global dimension at most one. Then every definable subcategory D ⊆ D(R-Mod)

is determined on cohomology, that is X ∈ D if and only if HnX[−n] ∈ D for all

n ∈ Z. As a result we have ZgD(R-Mod) =
⋃
n∈Z

ZgnR.

Throughout the rest of this subsection suppose R is a coherent commutative

ring of weak global dimension at most one such that every finitely presented R-

module has finite projective dimension and set T = D(R-Mod). Then for every

M ∈ R-mod and n ∈ Z, M [−n] ∈ Dc(R-Mod). By Theorem 8.3.7, every In
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induces a homeomorphism between Zg(R-Mod) and ZgnR ⊆ ZgD(R-Mod) with the

subspace topology and by Theorem 8.3.8, ZgD(R-Mod) =
⋃
n∈Z

ZgnR.

Proposition 8.3.9. Suppose D ⊆ D(R-Mod) is a T -tensor-closed definable sub-

category, then Hn(D) ⊆ R-Mod is an fp-hom-closed definable subcategory.

Proof. Suppose X ∈ Hn(D) and A ∈ R-mod. By our assumption on R and

Theorems 8.3.7 and 8.3.8, Hn(D) is definable, X[−n] ∈ D and A[0] ∈ Dc(R-Mod).

Since D is T -tensor-closed, A[0]∨ ⊗L
R X[−n] ∼= RHom(A[0], X[−n]) ∈ D and

therefore Hn(RHom(A[0], X[−n])) ∈ Hn(D). But,

Hn(RHom(A[0], X[−n])) ∼= D(R-Mod)(A[0], X[0]) ∼= HomR(A,X),

so hom(A,X) ∈ Hn(D) and Hn(D) is fp-hom-closed. �

Corollary 8.3.10. There exists a lattice monomorphism

O(Zg⊗D(R-Mod)) ↪→ O(
⋃
n∈Z

Zghom(R-Mod)),

where
⋃
n∈Z

Zghom(R-Mod) denotes the Z-indexed disjoint union of copies of the fp-

hom-closed Ziegler topology. The mapping on closed complements sends a closed

subset C ⊆ Zg⊗D(R-Mod) to
⋃
n∈Z

C n ⊆
⋃
n∈Z

Zghom(R-Mod) where, if C = D∩ pinjT for

a T -tensor-closed definable subcategory D ⊆ T , then C n = Hn(D) ∩ pinjR-Mod.

Proposition 8.3.11. If D ⊆ D(R-Mod) is a definable subcategory with internal

tensor-dual D∨, then for any n ∈ Z, (D ∩ In(R-Mod))∨ = D∨ ∩ I−n(R-Mod).

Proof. Suppose D ⊆ D(R-Mod) is a definable subcategory with corresponding

cohomological ideal J . Then D ∩ In(R-Mod) is also definable by Theorem 8.3.7

[27, Theorem 7.3] and we will denote the corresponding cohomological ideal by

J ′. Since, for all X ∈ D ∩ In(R-Mod), H i(X) = 0 for all i 6= n, (R[−i], X) = 0

for all i 6= n. Therefore, idR[−i] ∈ J ′ for all i 6= n and J ′ is generated as a

cohomological ideal by J ∪ {R[i] : i 6= −n}. Therefore, by Lemma 7.2.1 and



172 CHAPTER 8. TORSION PAIRS AND DEFINABILITY

noting that (idR[−i])
∨ = idR[−i]∨ = idR[i], the cohomological ideal J ′∨ associated to

(D ∩ In(R-Mod))∨ is generated by J ∨ ∪ {R[i] : i 6= n}.
Therefore, Y ∈ (D ∩ In(R-Mod))∨ if and only if Y ∈ D∨ and H−i(Y ) ∼=

(R[i], Y ) ∼= (idR[i], Y ) = 0 for all i 6= n. So Y ∈ (D ∩ In(R-Mod))∨ if and only if

Y ∈ D∨ ∩ I−n(R-Mod), as required. �

Corollary 8.3.12. If D ⊆ In(R-Mod) ⊆ D(R-Mod) is a definable subcategory

then its internal tensor-dual D∨ is contained in I−n(R-Mod).

Theorem 8.3.13. Suppose R is a coherent commutative ring of weak global di-

mension at most one such that every finitely presented module is of finite projective

dimension and let T = D(R-Mod). Let D be a definable subcategory of T with in-

ternal tensor-dual D∨. Then, for each n ∈ Z, Hn(D) and H−n(D∨) are elementary

dual definable subcategories in the sense of Theorem 2.4.12.

Proof. Let D be a definable subcategory of T with corresponding cohomological

ideal J . First we show that H−n(D∨) ⊆ Hn(D)d.

Let Y ∈ H−n(D∨) and suppose Fg ∈ (R-mod,Ab)fp has the following presen-

tation, (V,−)
(g,−)−−−→ (U,−) → Fg → 0. Recall that Y ∈ Hn(D)d if and only if for

all Fg ∈ (R-mod,Ab)fp such that Fg(H
n(D)) = 0, (Fg)

d(Y ) = 0 where (Fg)
d has

presentation

0→ (Fg)
d → (U ⊗R −)

g⊗R−−−−→ (V ⊗R −)

and Hn(D)d denotes the elementary dual definable subcategory of

Hn(D) ⊆ R-Mod. Assume Fg(H
n(D)) = 0, or equivalently for all X ∈ Hn(D) and

every morphism h : U → X, h factors via g. We want to show that g ⊗R Y is a

monomorphism.

By our assumption on R, I−n(g) : U [−n] → V [−n] is a morphism in T c and

therefore there exists an exact triangle in T c of the form

A
f−→ U [−n]

g[−n]−−−→ V [−n]→ A[1].

Now for every Z ∈ D ∩ In(R-Mod), Z ∼= Hn(Z)[−n] where Hn(Z) ∈ Hn(D) and

so any morphism U [−n] → Z corresponds (via In) to a morphism U → Hn(Z).
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Therefore, since every morphism U → Hn(Z) factors via g, every morphism

U [−n] → Z factors via g[−n], or equivalently, (f, Z) = 0. Hence, f is in the

cohomological ideal associated to D ∩ In(R-Mod), which we will denote by J ′.
Now, by [27, Theorem 7.3], Y ∈ H−n(D∨) implies Y [n] ∈ D∨∩I−n(R-Mod) and

by Proposition 8.3.11 we have Y ∈ H−n(D∨) if and only if D(R-Mod)(f∨, Y [n]) =

0 for all f ∈ J ′. So D(R-Mod)(f∨, Y [n]) = 0 for all f ∈ J ′ or equivalently

Hn(f ⊗L
R Y [0]) = 0 for all f ∈ J ′.

Since −⊗L
R Y [0] is exact and Hn is cohomological we have an exact sequence

Hn(A⊗L
RY [0])

Hn(f⊗L
RY [0])

−−−−−−−−→ Hn(U [−n]⊗L
RY [0])

Hn(g[−n]⊗L
RY [0])

−−−−−−−−−−→ Hn(V [−n]⊗L
RY [0]).

Therefore since f ∈ J ′ and Hn(f ⊗L
R Y [0]) = 0, Hn(g[−n]⊗L

R Y [0]) is a monomor-

phism. Consequently,

g ⊗R Y ∼= H0(g[0]⊗L
R Y [0]) ∼= H0((g[−n]⊗L

R (Y [0]))[n]) ∼= Hn((g[−n]⊗L
R Y [0]))

is a monomorphism and Y ∈ Hn(D)d.

We have established that H−n(D∨) ⊆ Hn(D)d. For the converse, note that

Hn(D) = Hn(D∨∨) ⊆ Hn(D∨)d and recall that elementary duality of definable

subcategories is inclusion-preserving. Therefore, Hn(D)d ⊆ Hn(D∨) and we have

equality, as required. �

Remark 8.3.14. Under the assumptions of Theorem 8.3.13, if D is T -tensor-closed,

then D∨ = D (see Proposition 7.2.2) and we can see that the monomorphism in

Corollary 8.3.10 is not an isomorphism. Indeed, given a non-zero fp-hom-closed

definable subcategory D ⊆ R-Mod and n 6= 0, there is no T -tensor-closed definable

subcategory X ⊆ D(R-Mod) such that H i(X ) =

0 if i 6= n

D if i = n,
since if Hn(X ) =

D then H−n(X ) = Dd.
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[40] R. Laking and J. Vitória. Definability and approximations in triangulated

categories. Pacific journal of mathematics, 306(2):557–586, 2020.

[41] S. Mac Lane. Categories for the Working Mathematician. Springer Science &

Business Media, New York, 1971.

[42] A. Neeman. The Grothendieck duality theorem via Bousfield’s techniques

and Brown representability. Journal of the American Mathematical Society,

9(1):205–236, 1996.



178 BIBLIOGRAPHY

[43] A. Neeman. Triangulated Categories, volume 148 of Annals of Mathematics

Studies. Princeton University Press, 2001.

[44] A. Neeman. Some adjoints in homotopy categories. Annals of Mathematics,

171(3):2143–2155, 2010.

[45] A. Neeman and M. Bökstedt. The chromatic tower for D(R). Topology,

31(3):519–532, 1992.

[46] P. Nicolás. On torsion torsionfree triples. preprint, arXiv:0801.0507, 2008.

[47] S. Perera. Grothendieck Rings of Theories of Modules. PhD the-

sis, The University of Manchester(United Kingdom), 2011. (available at

https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html).

[48] M. Prest. Purity, Spectra and Localisation. Encyclopedia of Mathematics and

its Applications. Cambridge University Press, Cambridge, 2009.

[49] M. Prest. Definable additive categories: purity and model theory. Memoirs

of the American Mathematical Society, 210(987), 2011.

[50] M. Prest. Multisorted modules and their model theory. Model Theory of

Modules, Algebras and Categories, Contemporary Mathematics, 730:115–151,

2019.

[51] M. Prest and R. Rajani. Structure sheaves of definable additive categories.

Journal of Pure and Applied Algebra, 214(8):1370–1383, 2010.

[52] C. Psaroudakis and J. Vitória. Realisation functors in tilting theory. Mathe-

matische Zeitschrift, 288:965–1028, 2018.

[53] G. Puninski and M. Prest. Ringel’s conjecture for domestic string algebras.

Mathematische Zeitschrift, 282(1):61–77, 2016.
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Appendix A

GAP code

A.1 Example 5.1.12

We show that M(ab−1ab−1)⊗M(b−1a) ∼= P ⊕ P ⊕ P ⊕M(ab−1), where P ∼= kV4

denotes the four dimensional indecomposable projective module. First we load the

‘QPA’ package (see [28]) and define the path algebra in GAP (see [26]) using the

following input.

gap> LoadPackage("qpa");

gap> Q:=Quiver(1,[[1,1,"a"],[1,1,"b"]]);

gap> kQ:=PathAlgebra(Field(Z(2)),Q);

gap> AssignGeneratorVariables(kQ);

gap> relations:=[a^2,a*b-b*a,b^2];

gap> A:=kQ/relations;

Next we calculate by hand the action of a and b on the 15 dimensional module

M(ab−1ab−1) ⊗M(b−1a). Denote the generators of M(ab−1ab−1) by x0, ..., x4 as

pictured below.

x3 x1

x4 x2 x0

a b a b

180
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Denote the generators of M(b−1a) by y0, y1 and y2 with the action of a and b

as pictured below.

y2 y0

y1

ab

Therefore we take xi ⊗ yj for i = 0, ..., 4 and j = 0, ..., 2 as generators for

M(ab−1ab−1)⊗M(b−1a). Fix the order of the generators to be

x0 ⊗ y0, x0 ⊗ y1, x0 ⊗ y3, ..., x4 ⊗ y0, x4 ⊗ y1, x4 ⊗ y2.

The action of a is given by multiplying on the left by the following matrix.



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


The action of b is given by multiplying on the left by the following matrix.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Below we provide the GAP input to define the matrices which correspond to

the action of a and b, denoted by ‘mata’ and ‘matb’ respectively.

gap> v0:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v2:=[0*Z(2),Z(2)^0,0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v578:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,Z(2)^0,

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v8:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0,

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v9:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),

Z(2)^0,0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v111314:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),

0*Z(2),0*Z(2),0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,Z(2)^0,0*Z(2)];

gap> v14:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),
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0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0,0*Z(2)];

gap> v15:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0];

gap> mata:=[v2,v0,v0,v578,v8,v9,v8,v0,v0,v111314,v14,v15,v14,v0,v0];

gap> v1:=[Z(2)^0,0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v235:=[0*Z(2),Z(2)^0,Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),0*Z(2),0*Z(2),

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v8:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0,

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v7:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0,0*Z(2),

0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> v8911:=[0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),0*Z(2),

Z(2)^0,Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),0*Z(2),0*Z(2),0*Z(2)];

gap> matb:=[v0,v0,v2,v1,v2,v235,v0,v0,v8,v7,v8,v8911,v0,v0,v14];

We define the 15 dimensional module M(ab−1ab−1)⊗M(b−1a) assigned to the

variable S as follows.

gap> S:=RightModuleOverPathAlgebra(A, [["a", mata],["b",matb]]);

<[ 15 ]>

Using the command ‘DecomposeModuleWithMultiplicities’ we find that

M(ab−1ab−1)⊗M(b−1a) decomposes into 3 copies of a 4-dimensional module and

a 3-dimensional module.

gap> DecomposeModuleWithMultiplicities(S);

[ [ <[ 4 ]>, <[ 3 ]> ], [ 3, 1 ] ]

Recall that the unique indecomposable projective P is kG, where G = V4 =〈
x, y|x2 = y2 = [x, y] = eG

〉
. Here the generators are 1, x, y and xy, the action of

a ∼= x+ 1 is given by multiplication on the left by the matrix
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1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


and the action of b ∼= y + 1 is given by multiplication on the left by the matrix

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

 .

We define the 4-dimensional projective module in GAP, assigned to the variable

P as follows.

gap> e12:=[Z(2)^0,Z(2)^0,0*Z(2),0*Z(2)];

gap> e34:=[0*Z(2),0*Z(2),Z(2)^0,Z(2)^0];

gap> e13:=[Z(2)^0,0*Z(2),Z(2)^0,0*Z(2)];

gap> e24:=[0*Z(2),Z(2)^0,0*Z(2),Z(2)^0];

gap> P:=RightModuleOverPathAlgebra(A,[["a",[e12,e12,e34,e34]],["b",

[e13,e24,e13,e24]]]);

Similarly the 3-dimensional module M(ab−1) can be pictured as follows.

x1

x2 x0

ba

Therefore, fixing the order of the generators x0, x1, x2, the action of a is given

by the matrix 0 0 0

0 0 1

0 0 0
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and the action of b is given by 0 0 0

1 0 0

0 0 0

 .

Therefore we define M(ab−1) in GAP, assigned to the variable H as follows.

gap> H:=RightModuleOverPathAlgebra(A, [["a", [[0*Z(2),0*Z(2),0*Z(2)],

[0*Z(2),0*Z(2),Z(2)^0],[0*Z(2),0*Z(2),

0*Z(2)]]],["b",[[0*Z(2),0*Z(2),0*Z(2)],[Z(2)^0,0*Z(2),0*Z(2)],

[0*Z(2),0*Z(2),0*Z(2)]]]]);

Now using the ‘IsDirectSummand’ command, we check that P = kG and H =

M(ab−1) are indeed the 3 and 4-dimensional indecomposable direct summands of

M(ab−1ab−1)⊗M(b−1a).

gap> IsDirectSummand(P,S);

true

gap> IsDirectSummand(H,S);

true

A.2 Example 6.1.23

Let T = kG-Mod where k is a field of characteristic 5 and G =
〈
g|g5 = 1

〉
. We

show that the table below gives the tensor product over k of these modules.

⊗k M1 M2 M3 M4 M5

M1 M1 M2 M3 M4 M5

M2 M2 M1 ⊕M3 M2 ⊕M4 M3 ⊕M5 M
(2)
5

M3 M3 M2 ⊕M4 M1 ⊕M3 ⊕M5 M2 ⊕M (2)
5 M

(3)
5

M4 M4 M3 ⊕M5 M2 ⊕M (2)
5 M1 ⊕M (3)

5 M
(4)
5

M5 M5 M
(2)
5 M

(3)
5 M

(4)
5 M

(5)
5
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The first row and column are clear as M1 is the tensor-unit and the last row

and column follow since the subcategory of projective modules is a tensor-ideal.

For the other six entries we use the computer package GAP (see [26]).

First we load the ‘QPA’ package (see [28]) into GAP, define the quiver Q with

one vertex and one arrow and define the algebra A ∼= kG which is the path algebra

of Q factored out by the relation x5 = 0 where x is the single arrow of the quiver

Q.

gap> LoadPackage("qpa");

gap> Q:=Quiver(1,[[1,1,"x"]]);

gap> kQ:=PathAlgebra(Field(Z(5)),Q);

gap> AssignGeneratorVariables(kQ);

gap> relations:=[x^5];

gap> A:=kQ/relations;

Next we define the five indecomposable variables M1, ...,M5 in GAP using the

following input.

gap> M1:=RightModuleOverPathAlgebra(A,[["x",[[0*Z(5)]]]]);

gap> M2:=RightModuleOverPathAlgebra(A,[["x",[[0*Z(5),Z(5)^0],[0*Z(5)

,0*Z(5)]]]]);

gap> M3:=RightModuleOverPathAlgebra(A,[["x",[[0*Z(5),Z(5)^0,0*Z(5)],

[0*Z(5),0*Z(5),Z(5)^0],[0*Z(5),0*Z(5),0*Z(5)]]]]);

gap> M4:=RightModuleOverPathAlgebra(A,[["x",[[0*Z(5),Z(5)^0,0*Z(5),

0*Z(5)],[0*Z(5),0*Z(5),Z(5)^0,0*Z(5)],[0*Z(5),0*Z(5),0*Z(5),Z(5)^0]

,[0*Z(5),0*Z(5),0*Z(5),0*Z(5)]]]]);

gap> M5:=RightModuleOverPathAlgebra(A,[["x",[[0*Z(5),Z(5)^0,0*Z(5),

0*Z(5),0*Z(5)],[0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5)],[0*Z(5),0*Z(5),

0*Z(5),Z(5)^0,0*Z(5)],[0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0],[0*Z(5),

0*Z(5),0*Z(5),0*Z(5),0*Z(5)]]]]);

Next we calculate the tensor products by hand. Here Mi has generators

1, T, ..., T i−1 andMi⊗Mj has generators 1⊗1, T⊗1, ..., T i−1⊗1, ..., 1⊗T j−1, ..., T i−1⊗
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T j−1. We fix the order of the generators and calculate the action of T noting that

T (x⊗ y) = Tx⊗ y + x⊗ Ty + Tx⊗ Ty for all generators x and y.

We shall provide working for M2 ⊗M3. For all other tensor products we will

simply display the GAP code. We have generators 1⊗ 1, T ⊗ 1, 1⊗ T, T ⊗ T, 1⊗
T 2, T ⊗ T 2. Therefore T (1 ⊗ 1) = T ⊗ 1 + 1 ⊗ T + T ⊗ T so the first row of our

matrix will be [0, 1, 1, 1, 0, 0]. Indeed the action of T is given by multiplying on

the left by the matrix 

0 1 1 1 0 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0


.

We define the 6-dimensional module N := M2⊗M3 in GAP using the following

input code.

gap> v0:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> v234:=[0*Z(5),Z(5)^0,Z(5)^0,Z(5)^0,0*Z(5),0*Z(5)];

gap> v4:=[0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5)];

gap> v456:=[0*Z(5),0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,Z(5)^0];

gap> v6:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0];

gap> mat:=[v234,v4,v456,v6,v6,v0];

gap> N:=RightModuleOverPathAlgebra(A,[["x",mat]]);

Using the ‘DecomposeModule’ command we see that M2 ⊗M3 decomposes as

an indecomposable 2-dimensional module and an indecomposable 4-dimensional

module. Since in this example there is only one indecomposable module of each

dimension, we can deduce that M2 ⊗M3
∼= M2 ⊕M4. The ‘IsDirectSummand’

command confirms this conclusion.

gap> DecomposeModule(N);

[ <[ 2 ]>, <[ 4 ]> ]

gap> IsDirectSummand(M2,N);



188 APPENDIX A. GAP CODE

true

gap> IsDirectSummand(M4,N);

true

We define the 4-dimensional module L := M2⊗M2 in GAP using the following

input code.

gap> u0:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> u4:=[0*Z(5),0*Z(5),0*Z(5),Z(5)^0];

gap> u234:=[0*Z(5),Z(5)^0,Z(5)^0,Z(5)^0];

gap> L:=RightModuleOverPathAlgebra(A,[["x",[u234,u4,u4,u0]]]);

Using the ‘DecomposeModule’ command and the ‘IsDirectSummand’ command

we can see that M2 ⊗M2
∼= M1 ⊕M3.

gap> DecomposeModule(L);

[ <[ 1 ]>, <[ 3 ]> ]

gap> IsDirectSummand(M1,L);

true

gap> IsDirectSummand(M3,L);

true

We define the 8-dimensional module H := M2⊗M4 in GAP using the following

input code.

gap> w0:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> w256:=[0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),0*Z(5)]

;

gap> w367:=[0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5)]

;

gap> w8:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0];

gap> w6:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5)];

gap> w7:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5)];

gap> w478:=[0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0]
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;

gap> H:=RightModuleOverPathAlgebra(A,[["x",[w256,w367,w478,w8,w6,w7,

w8,w0]]]);

Using the ‘DecomposeModule’ command and the ‘IsDirectSummand’ command

we can see that M2 ⊗M4
∼= M3 ⊕M5.

gap> DecomposeModule(H);

[ <[ 3 ]>, <[ 5 ]> ]

gap> IsDirectSummand(M3,H);

true

gap> IsDirectSummand(M5,H);

true

We define the 9-dimensional module J := M3⊗M3 in GAP using the following

input code.

gap> y0:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0

*Z(5)];

gap> y245:=[0*Z(5),Z(5)^0,0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),0*Z(5),0*Z(5),

0*Z(5)];

gap> y356:=[0*Z(5),0*Z(5),Z(5)^0,0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),0*Z(5),

0*Z(5)];

gap> y6:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),0*

Z(5)];

gap> y578:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),Z(5)^0,Z(5)^0,

0*Z(5)];

gap> y689:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),Z(5)^0,

Z(5)^0];

gap> y9:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(

5)^0];

gap> y8:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*

Z(5)];
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gap> J:=RightModuleOverPathAlgebra(A,[["x",[y245,y356,y6,y578,y689,y

9,y8,y9,y0]]]);

Using the ‘DecomposeModule’ command and the ‘IsDirectSummand’ command

we can see that M3 ⊗M3
∼= M1 ⊕M3 ⊕M5.

gap> DecomposeModule(J);

[ <[ 1 ]>, <[ 3 ]>, <[ 5 ]> ]

gap> IsDirectSummand(M3,J);

true

gap> IsDirectSummand(M1,J);

true

gap> IsDirectSummand(M5,J);

true

We define the 12-dimensional module W := M3⊗M4 in GAP using the follow-

ing input code.

gap> z0:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*

Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> z256:=[0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),0*Z(5),

0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> z367:=[0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),

0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> z478:=[0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,

0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> z8:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*

Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> z6910:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5)

,Z(5)^0,Z(5)^0,0*Z(5),0*Z(5)];

gap> z71011:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5

),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5)];

gap> z81112:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^
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0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0];

gap> z12:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0

*Z(5),0*Z(5),0*Z(5),Z(5)^0];

gap> z10:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0

*Z(5),Z(5)^0,0*Z(5),0*Z(5)];

gap> z11:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0

*Z(5),0*Z(5),Z(5)^0,0*Z(5)];

gap> W:=RightModuleOverPathAlgebra(A,[["x",[z256,z367,z478,z8,z6910,

z71011,z81112,z12,z10,z11,z12,z0]]]);

Using the ‘DecomposeModule’ command and the ‘IsDirectSummand’ command

we can see that M3 ⊗M4
∼= M2 ⊕M5 ⊕M5.

gap> DecomposeModule(W);

[ <[ 2 ]>, <[ 5 ]>, <[ 5 ]> ]

gap> IsDirectSummand(M5,W);

true

gap> IsDirectSummand(M2,W);

true

We define the 16-dimensional module F := M4⊗M4 in GAP using the following

input code.

gap> s0:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*

Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> s256:=[0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),0*Z(5),

0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> s367:=[0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),

0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> s478:=[0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,

0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> s8:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*

Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];
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gap> s6910:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5)

,Z(5)^0,Z(5)^0,0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> s71011:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5

),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> s81112:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^

0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> s12:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0

*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),0*Z(5),0*Z(5)];

gap> s101314:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(

5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5),0*Z(5)];

gap> s111516:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(

5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),0*Z(5),Z(5)^0,Z(5)^0];

gap> s121516:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(

5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0];

gap> s111415:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(

5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5),Z(5)^0,Z(5)^0,0*Z(5)];

gap> s16:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0

*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0];

gap> s14:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0

*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5),0*Z(5)];

gap> s15:=[0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0

*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),0*Z(5),Z(5)^0,0*Z(5)];

gap> F:=RightModuleOverPathAlgebra(A,[["x",[s256,s367,s478,s8,s6910,

s71011,s81112,s12,s101314,s111415,s121516,s16,s14,s15,s16,s0]]]);

Using the ‘DecomposeModule’ command we can see that M4 ⊗M4
∼= M1 ⊕

M5 ⊕M5 ⊕M5.

gap> DecomposeModule(F);

[ <[ 1 ]>, <[ 5 ]>, <[ 5 ]>, <[ 5 ]> ]
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